【“星瑞” O6 评测】 — llm CPU部署对比高通骁龙CPU

在这里插入图片描述

前言

随着大模型应用场景的不断拓展,arm cpu 凭借其独特优势在大模型推理领域的重要性日益凸显。它在性能、功耗、架构适配等多方面发挥关键作用,推动大模型在不同场景落地

1. CPU对比

星睿 O6 CPU 采用 Armv9 架构,集成了 Arm®v9 CPU 核心、Arm Immortalis™ GPU 及安谋科技 “周易” NPU 等。其中,“周易” NPU 算力可达 30TOPS,在处理 AI 相关任务时,异构的架构能让 CPU、GPU、NPU 协同工作,加速 AI 模型的运行。骁龙 8 Elite 采用 2+6 架构设计,首次运用专为智能手机打造的第二代自研 Oryon CPU 架构。两颗超大核频率为 4.32GHz,六颗大核频率为 3.53GHz,每个 CPU 丛集都配备了较大缓存,还引入全新的数据时序预取器以及全新的性能内核设计,在通用计算性能上表现强劲。

这里我们让二者通过llama.cpp跑同样模型的推理速度对比

2. 星瑞O6跑llama.cpp

参阅:https://aijishu.com/a/1060000000507877

3. 骁龙8 Elite跑llama.cpp

3.1 依赖安装

## 1.安装[termux](https://termux.dev/en/)app,配置ssh,

## 2.安装编译环境
apt update && apt upgrade -y
apt install git cmake

3.2 不开启klelidiAI优化

cmake -B build
cmake --build build --config Release -j

3.2 验证模型正确性

还是使用“星瑞” O6 评测 —— CPU llama.cpp不同优化速度对比转换的模型

taskset -c 0,3,4,5,6,7 ./build_kle/bin/llama-cli -m asserts/Qwen2.5-3B-Instruct-Q4_0.gguf -c 4096 -t 6 --conversation

打印信息

> hello
Hello! How can I assist you today? Do you have any questions or topics you'd like to discuss?

> 
llama_perf_sampler_print:    sampling time =       2.79 ms /    32 runs   (    0.09 ms per token, 11477.76 tokens per second)
llama_perf_context_print:        load time =     498.94 ms
llama_perf_context_print: prompt eval time =     592.82 ms /     9 tokens (   65.87 ms per token,    15.18 tokens per second)
llama_perf_context_print:        eval time =    1711.00 ms /    22 runs   (   77.77 ms per token,    12.86 tokens per second)
llama_perf_context_print:       total time =    6498.13 ms /    31 tokens
Interrupted by user

3.3 不开启klelidiAI优化的benchmark

taskset -c 0,1,2,3,4,5,6,7 ./build/bin/llama-bench -m asserts/Qwen2.5-3B-Instruct-Q4_0.gguf -p 128 -n 128 -t 8

用[0,2,3,4,5,6,7]7个核心的结果

modelsizeparamsbackendthreadstestt/s
qwen2 3B Q4_01.69 GiB3.09 BCPU7pp12863.59 ± 0.31
qwen2 3B Q4_01.69 GiB3.09 BCPU7tg12810.87 ± 0.37

用8个核心的结果

modelsizeparamsbackendthreadstestt/s
qwen2 3B Q4_01.69 GiB3.09 BCPU8pp12872.39 ± 1.43
qwen2 3B Q4_01.69 GiB3.09 BCPU8tg1289.99 ± 1.02

3.5 开启kleidiai优化的benchmark

kleidiai已经集成到llama.cpp的后端,只需要编译时给定正确的选项就行。

cmake -B build_kle -DGGML_CPU_KLEIDIAI=ON
cmake --build build_kle --config Release -j

benchmark命令: taskset -c 0,2,3,4,5,6,7 ./build_kle/bin/llama-bench -m asserts/Qwen2.5-3B-Instruct-Q4_0.gguf -p 128 -n 128 -t 7

用[0,2,3,4,5,6,7]7个核心的结果

modelsizeparamsbackendthreadstestt/s
qwen2 3B Q4_01.69 GiB3.09 BCPU7pp12861.55 ± 0.10
qwen2 3B Q4_01.69 GiB3.09 BCPU7tg12810.41 ± 0.13

用8个核心的结果

modelsizeparamsbackendthreadstestt/s
qwen2 3B Q4_01.69 GiB3.09 BCPU8pp12869.05 ± 0.88
qwen2 3B Q4_01.69 GiB3.09 BCPU8tg1289.68 ± 0.16

打印中有load_tensors: CPU_KLEIDIAI model buffer size = 1488.38 MiBKLEIDIAI = 1表明编译选项正确打开。

4.总结

从推理速度来看:星瑞O6在同样的核心数量时,推理速度更快。而且星瑞O6共有12个CPU核。

5.疑问

  • 从主频来看高通的主频更高,理论上推理速度应该更快。
  • 不知道用高通的qnn cpu后端能否比llama.cpp推理更快。
宏碁星瑞4352g笔记本的无线网卡驱动可以通过以下途径获得和安装。 首先,您可以登录到宏碁官方网站(www.acer.com)并进入“支持”页面。在支持页面上,您可以找到一个名为“驱动和手册”的选项。单击该选项并选择您的笔记本型号“星瑞4352g”。接下来,您将看到一个“驱动下载”页面。在这个页面上,您可以选择下载对应您操作系统的无线网卡驱动程序的链接。 除了宏碁官方网站,您还可以尝试其他第三方软件下载网站,如驱动之家、驱动精灵等。在这些网站上,您可以搜索到星瑞4352g笔记本的无线网卡驱动程序。请确保下载的驱动程序是与您的操作系统和笔记本型号完全兼容的版本。 下载完驱动程序后,您需要进行安装。双击下载的驱动程序文件,按照安装向导的指示进行操作。在安装过程中,可能会需要您重启电脑以完成安装。 完成安装后,您可以通过打开设备管理器来确认无线网卡驱动程序是否正确安装。在设备管理器中,展开“网络适配器”选项,找到您的无线网卡,并检查是否显示为正常工作状态。 如果您安装的驱动程序仍然无法使无线网卡正常工作,您可以尝试进行更新或重新安装驱动程序。在设备管理器中,右键单击无线网卡,选择“更新驱动程序”或“卸载设备”,然后重新安装驱动程序。 希望以上信息对您有所帮助,祝您成功安装宏碁星瑞4352g笔记本的无线网卡驱动!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值