简介
本篇承接上一篇,继续opencv下矩阵计算的函数使用。
计算矩阵的逆
注意:矩阵A是可逆矩阵的充分必要条件是行列式detA不等于0。
具体代码
double x[3][3] = {{1, 2, 3}, {2, 2, 1}, {3, 4, 3}};
double y[3][3] = {{1, 0, 0}, {0, 2, 0}, {0, 0, 3}};
void showMatdate(Mat tmpMat){
int i, j;
CvScalar s1;
Width = tmpMat.rows;
Height = tmpMat.cols;
IplImage tmp;
tmp = tmpMat;
for(i=0; i< Width; i++){
for(j=0; j<Height; j++){
s1 = cvGet2D(&tmp, i, j);
printf("%0.1lf ", s1.val[0]);
}
printf("\n");
}
printf("\n");
}
int main(int argc, char *argv[]){
/*************初始化矩阵*****************************/
mat1 = Mat(3, 3, CV_64FC1, x);
src1 = mat1;
mat2 = Mat(3, 3, CV_64FC1, y);
src2 = mat2;
/*************显示矩阵数据***************************/
printf("mat1:\n");
showMatdate(mat1);
/*****************矩阵的逆**********************/
mat3 = Mat(3, 3, CV_64FC1);
src3 = mat3;
cvInvert(&src1, &src3);
showMatdate(mat3);
return 0;
}
结果显示
矩阵元素自然对数
具体代码
/*****************矩阵元素自然对数**********************/
mat3 = Mat(3, 3, CV_64FC1);
src3 = mat3;
cvLog(&src1, &src3);
showMatdate(mat3);
结果显示
矩阵查找表转换
具体代码
/*****************矩阵查找表转换**×******************/
uchar lut[256];
mat3 = Mat(3, 3, CV_8UC1);
src3 = mat3;
mat1.convertTo(mat1, CV_8UC1);
src1 = mat1;
mat2 = cvCreateMatHeader(1, 256, CV_8UC1);
src2 = mat2;
for (int i = 0; i < 256; i++) {
lut[i] = 255 - i;
}
cvSetData(&src2, lut, 0);
cvLUT(&src1, &src3, &src2);
printf("cvLUT(mat1):\n");
showMatdate(mat3);
注意:mat3 = src2[mat1].(如果mat1格式为CV_8U)
mat3 = src2[mat1 + 128].(如果mat1格式为CV_8S)
结果显示
计算向量间马氏距离
具体代码
/*************显示矩阵数据***************************/
printf("mat1:\n");
showMatdate(mat1);
printf("mat2:\n");
showMatdate(mat2);
/*****************计算向量间马氏距离**********************/
mat3 = Mat(3, 3, CV_64FC1, z);
src3 = mat3;
printf("mat3:\n");
showMatdate(mat3);
tmp = cvMahalanobis(&src1, &src2, &src3);
printf("cvMahalanobis(mat1, mat2, mat3): %.1lf\n", tmp);
马氏距离的定义,参考如下:http://blog.csdn.net/jmy5945hh/article/details/20536929
结果显示
获得矩阵元素间最大值
具体代码
/*****************计算矩阵参数间最大值**********************/
mat3 = Mat(3, 3, CV_64FC1);
src3 = mat3;
cvMax(&src1, &src2, &src3);
printf("cvMax(mat1, mat2):\n");
showMatdate(mat3);
类似的还有cvMaxS:计算矩阵元素和参数的最大值。
cvAvg:计算矩阵元素的平均值。
cvAvgSdv:计算矩阵元素的平均值和标准差。
cvMin:计算矩阵参数间最小值。
cvMinS:计算矩阵元素和参数的最小值。
结果显示
单通道合成多通道矩阵
具体代码
mat3 = Mat(1, 3, CV_8UC3);
src3 = mat3;
cvMerge(&src1, &src2, 0, 0, &src3);
printf("cvMax(mat1, mat2):\n");
showMatdate(mat3);
对应的函数为:split()(将多通道分离为单通道矩阵)。
获取矩阵最大最小元素
具体代码
printf("mat1:\n");
showMatdate(mat1);
cvMinMaxLoc(&src1, &min, &max, &min_p1, &max_p2);
printf("min:%lf, min_p1.x:%d, min_p1.y:%d\n", min, min_p1.x, min_p1.y);
printf("max:%lf, max_p2.x:%d, max_p2.y:%d\n", max, max_p2.x, max_p2.y);
获取到最大最小值:max,min。以及它们的对应位置坐标:min_p1, max_p2。
结果显示
两个矩阵傅里叶频谱相乘
具体代码
printf("mat1:\n");
showMatdate(mat1);
printf("mat2:\n");
showMatdate(mat2);
mat3 = Mat(3, 3, CV_64FC1);
src3 = mat3;
cvMulSpectrums(&src1, &src2, &src3, DFT_ROWS);
printf("mat3:\n");
showMatdate(mat3);
结果显示
矩阵乘法
具体代码
printf("mat1:\n");
showMatdate(mat1);
printf("mat2:\n");
showMatdate(mat2);
mat3 = Mat(3, 3, CV_64FC1);
src3 = mat3;
cvMul(&src1, &src2, &src3, 3);
printf("cvMul(mat1 * mat2 * 3):\n");
showMatdate(mat3);
结果显示
矩阵和转置的乘积
具体代码
printf("mat1:\n");
showMatdate(mat1);
printf("mat2:\n");
showMatdate(mat2);
mat3 = Mat(3, 3, CV_64FC1);
src3 = mat3;
cvMulTransposed(&src1, &src3, 0, &src2);
printf("cvMulTransposed(mat1):\n");
showMatdate(mat3);
void cvMulTransposed( const CvArr* src, CvArr* dst, int order, const CvArr* delta=NULL );
src:输入矩阵
dst:目标矩阵
order:乘法顺序
delta:一个可选数组, 在乘法之前从 src 中减去该数组。函数 cvMulTransposed 计算 src 和它的转置的乘积。
函数求值公式:
如果 order=0
dst=(src-delta)*(src-delta)T
否则
dst=(src-delta)T*(src-delta)
结果显示
矩阵绝对差等
具体代码
printf("mat1:\n");
showMatdate(mat1);
printf("mat2:\n");
showMatdate(mat2);
mat3 = Mat(3, 3, CV_64FC1);
src3 = mat3;
tmp = cvNorm(&src1, &src2, NORM_L1);
printf("cvNorm(mat1, mat2, NORM_INF):%lf\n", tmp);
double cvNorm(const CvArr* arr1, const CvArr* arr2=NULL, int norm_type=CV_L2, const CvArr* mask=NULL )
如果arr2 == NULL
则:
否则:
或者
结果显示
极性坐标转换到笛卡尔坐标
具体代码
printf("mat1:\n");
showMatdate(mat1);
printf("mat2:\n");
showMatdate(mat2);
mat3 = Mat(3, 1, CV_64FC1);
src3 = mat3;
mat4 = Mat(3, 1, CV_64FC1);
src4 = mat4;
cvPolarToCart(&src1, &src2, &src3, &src4, true);
printf("cvPolarToCart(mat1, mat2)--x:\n");
showMatdate(mat3);
printf("cvPolarToCart(mat1, mat2)--y:\n");
showMatdate(mat4);
void cvPolarToCart(const CvArr* magnitude, const CvArr* angle, CvArr* x, CvArr* y, int angle_in_degrees=0)
magnitude:极坐标的长度。
angle:极坐标的角度。
x:笛卡尔X坐标。
y:笛卡尔Y坐标。
angle_in_degrees:若为true,表示输入的是角度,否则表示输入的是弧度。
结果显示
矩阵元素求幂
具体代码
printf("mat1:\n");
showMatdate(mat1);
mat3 = Mat(3, 1, CV_64FC1);
src3 = mat3;
cvPow(&src1, &src3, 2);
printf("cvPow(mat1, 2):\n");
showMatdate(mat3);
结果显示
矩阵简化为向量
具体代
printf("mat1:\n");
showMatdate(mat1);
mat3 = Mat(3, 1, CV_64FC1);
src3 = mat3;
cvReduce(&src1, &src3, 1, CV_REDUCE_MAX);
printf("cvReduce(mat1, 1 , CV_REDUCE_MAX):\n");
showMatdate(mat3);
void cvReduce(const CvArr* src, CvArr* dst, int dim=-1, int op=CV_REDUCE_SUM)
src:待简化的矩阵。
dst:生成的向量。
dim:0意味着矩阵被处理成一行,1意味着矩阵被处理成为一列,-1时维数将根据输出向量的大小自动选择.
op:
CV_REDUCE_SUM-输出是矩阵的所有行/列的和.
CV_REDUCE_AVG-输出是矩阵的所有行/列的平均向量.
CV_REDUCE_MAX-输出是矩阵的所有行/列的最大值.
CV_REDUCE_MIN-输出是矩阵的所有行/列的最小值.
结果显示