从拼图游戏开始(三)_可行解的讨论

讨论一下拼图游戏(算法中的名称是15puzzle)中可行解的问题,实际上随机生成的15puzzle大约有%50是无解的,本文将就随机生成的谜题的可解性加以讨论。

设有如下矩阵:

12   1   10    2

7    11   4    14

5     x    9    15

8    13    6    3

将其排成水平的,有:12,1,10,2,7,11,4,14,5,X,9,15,8,13,6,3。并记该序列为A

定义:”倒置变量值“ TTi表示序列A中位于第i位之后比Ai小的元素的个数

也就是说上面的序列的倒置变量值分别是:11,0,8,0,4,6,1,6,1,3,4,2,2,1。求和,得到总的Tsum = 49。

那么有如下几个原则来判断当前问题是否有解:

设:问题宽度为W

设:问题的倒置变量和为T

一、对于一个W为奇数的问题来说,任何合法的移动都不会改变其"倒置变量值"的奇偶性。

证明:>>水平移动式不会改变问题的T

           >>垂直移动,意味值blank跨越了(W-1)个方格,由于问题宽度W是奇数的,那么(W-1)必定为偶数,再设这W-1个数中有n个数大于当前移动数,则有(W-1-n)个数小于当前移动数,那么移动后,带来的T的改变是:(W-1-n)-n=W-1-2n,因为W-1是偶数,则W-1-2n也必为偶数,说明问题的T的奇偶性不变。

二、当W为偶数时,有以下公式:(T是偶数) == (空格位于从矩阵底部往上数的奇数行中)

证明:>>水平移动式不会改变问题的T

           >>垂直移动,意味值blank跨越了(W-1)个方格,由于问题宽度W是偶数的,那么(W-1)必定为奇数,再设这W-1个数中有n个数大于当前移动数,则有(W-1-n)个数小于当前移动数,那么移动后,带来的T的改变是:(W-1-n)-n=W-1-2n,因为W-1是奇数,则W-1-2n也必为奇数,说明问题的T的奇偶性会交替变化,但是空格位置也在交替变化,这种变化也符合上面定义的公式。

OK,有了上面两个定理,我们可以推论出一下可行解原则

1、如果问题宽度是奇数的,那么每个可解的问题所定义的T必须是偶数的。

2、如果问题宽度是偶数的,那么当空格位于从下往上数的奇数行中时,问题的T必须是偶数的;当空格位于从下往上数的偶数行中时,问题的T必须是奇数的。

 

参考文档:http://www.cs.bham.ac.uk/~mdr/teaching/modules04/java2/TilesSolvability.html

阅读更多
个人分类: 业余项目
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

从拼图游戏开始(三)_可行解的讨论

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭