一看就是类似与斐波那契数列的递推
退了一个多小时也没推出来...
我想到f(4) = f(2)*f(2)+2*f(0)了,中间两端的砖横着放对应2*f(0)
但是后面6对应情况画不出有多少种,所以就没进展了
正确的是f(n) = f(2)*f(n-2) + 2*f(n-4) + ... + 2*f(0);
因为f(n) = f(2)*f(n-2) + f(4)*f(n-4) + ... + f(n)*f(0)中根据容斥定理,f(4)要去掉f(2)的情况,同理f(n)要去掉(f(2)、f(4)、...)的情况
将公示变形即可得到f(n) = 4*f(n-2) - f(n-4)
代码如下:
#include <stdio.h>
int a[32], i;
void init() {
a[0] = 1;
a[2] = 3;
for(i=4; i<=30; i+=2) {
a[i] = 4*a[i-2] - a[i-4];
}
}
int main(void) {
init();
while(scanf("%d", &i)!=EOF && i>=0) {
printf("%d\n", a[i]);
}
return 0;
}