hdu 2879 HeHe (数论:积性函数+欧拉定理+快速幂)

这个题是接触积性函数的第一题,完全不会做

感觉题目强的变态...

对积性函数不了解的同学可以百度下,主要参考的是它的性质以及哪几个常见的函数是积性函数

常见的有:

欧拉函数  -  f(n) = n*(1-1/p1)*(1-1/p2)* ... *(1-1/pk)//pi为素数

d(n) -n的正因子数目

σ(n) -n的所有正因子之和


下面是摘自别人的题解,感觉还是读得不太懂大哭

----------------------------------------------------------------------------------------------------------

1.证明p是素数时He[p] = 2.     

 x^2=x(mod p) —> p | x*(x-1).

因为x<p, 所以p不整除x也不整除x-1.

所以成立的情况下是x=1或者x=0.

He[p^k]=2,证明:

x^2 = x(mod p^k) -----> p^k | x*(x-1)

因为x<p^k, 所以当x不是p的倍数时,必然有gcd(p^k, x*(x-1)) == 1

而当x是p的倍数是,两侧同时除以gcd(p^k, x),又得到上面的形式(对x-1同理)

所以He[p^k] = 2


2.证明对于不同的两个素数p和q,He[p*q]=4=He[p]*He[q];

首先x=0和x=1是肯定成立的,

现在由x^2=x(mod p*q) —> p*q | x(x-1)

假设x=k*p[k<q]

——>p*q | k*p(k*p-1)

——>q | k*(k*p-1)

——>q | (k*p-1)  因为k<q  q是素数 所以gcd(k,q)=1

——>k*p+t*q=1

这里就变成了这个方程的解,由扩展欧几里得知,这个方程有解

但是k在[0,q-1]之内的解就一个,所以这里多一个解,同理设x=k*p又有一个解

所以x^2=x(mod p*q)有4个解(x=0 ,x=1 ,x=k*p, x=k*q)

—>He[p*q]=4=He[p]*He[q];

那么He[p1^r1*p2^r2*……*pk^rk]=2^k

然后可以证明HeHe只需要算n以内每个素数的倍数的个数.

举个例子:

计算HeHe[6] = He[1]*He[2]*He[3]*He[4]*He[5]*He[6]

He[1] =  2^0 

He[2] =  2^1 

He[3] =  2^1

He[4] =  2^1 = He[2*2] = He[2]

He[5] =  2^1

He[6] =  2^2 = He[2*3] = He[2] * He[3]

故He[6] = He[2]^3*He[3]^2*He[5]

题目代码如下:

#include <cstdio>
#include <iostream>
#define N 10000005
#define LL long long
using namespace std;

int prime[N], cnt;
bool vis[N];

void gen_primes() {
    int i, j;
    cnt = 0;
    for(i=2; i<=N; ++i) {
        if(!vis[i]) {
            prime[cnt++] = i;
            for(j=i+i; j<N; j+=i)
                vis[j] = 1;
        }
    }
}

LL Pow(LL a, LL b, LL c) {
    LL ans = 1;
    while(b) {
        if(b & 1) 
            ans = ans*a%c;
        a = a*a%c;
        b >>= 1;
    }
    return ans;
}

int main(void) {
    int T, n, m, i, j; 
    LL ans;
    gen_primes();
    scanf("%d", &T);
    while(T--) {
        scanf("%d%d", &n, &m);
        ans = 0;
        for(i=0; i<cnt; ++i) {
            if(prime[i] > n)
                break;
            ans += n/prime[i];
        }
        cout << Pow(2, ans, m) << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值