题意:国王要给n个城市进行规划,分成若干个州。如果:1、有边u到v以及有边v到u,则u,v必须划分到同一个州内。2、一个州内的两点至少要有一方能到达另一方。3、一个点只能划分到一个州内。
思路:先把能相互两两到达的点用强连通归为一个州,然后再进行缩点,建立新图,然后用匈牙利算法求出最大匹配,答案=强连通求出的联通块-最大匹配(最小路径覆盖=结点数-最大匹配)。
#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
#include <algorithm>
#include <vector>
#include <math.h>
#include <map>
#include <queue>
#include <stack>
#include <set>
#define maxn 5005
#define LL long long
#define Ld __int64
#define eps 0.000001
#define INF 999999999
using namespace std;
int n,m;
vector<int> G[maxn*2];
int dfn[maxn*2],low[maxn*2],sccno[maxn*2],scc_cnt;
int indx;
bool vis[maxn*2];
int flag[maxn*2];
bool f[maxn][maxn];
stack<int> s;
void Tarjan(int u)
{
indx++;
dfn[u]=low[u]=indx;
s.push(u);
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!sccno[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
scc_cnt++;
for(;;)
{
int x=s.top();
s.pop();
sccno[x]=scc_cnt;
if(x==u)
break;
}
}
}
void find_scc(int n)
{
indx=scc_cnt=0;
memset(sccno,0,sizeof(sccno));
memset(dfn,0,sizeof(dfn));
for(int i=1;i<=n;i++)
{
if(!dfn[i])
Tarjan(i);
}
}
bool DFS(int a)
{
for(int i=1;i<=n;i++)
{
if(f[a][i]==1 && !vis[i])
{
vis[i]=1;
if(flag[i]==0 || DFS(flag[i]))
{
flag[i]=a;
return true;
}
}
}
return false;
}
int match()
{
int ans=0;
memset(flag,0,sizeof(flag));
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof(vis));
if(DFS(i))
ans++;
}
return scc_cnt-ans; //答案=联通块-最大匹配
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
G[i].clear();
while(m--)
{
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
}
find_scc(n);
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++) //缩点,建立新图
{
for(int j=0;j<G[i].size();j++)
{
int v=G[i][j];
if(sccno[i]!=sccno[v])
{
f[sccno[i]][sccno[v]]=1;
}
}
}
printf("%d\n",match());
}
return 0;
}