HDU3861(强连通+最小覆盖路径)

题意:国王要给n个城市进行规划,分成若干个州。如果:1、有边u到v以及有边v到u,则u,v必须划分到同一个州内。2、一个州内的两点至少要有一方能到达另一方。3、一个点只能划分到一个州内。

思路:先把能相互两两到达的点用强连通归为一个州,然后再进行缩点,建立新图,然后用匈牙利算法求出最大匹配,答案=强连通求出的联通块-最大匹配(最小路径覆盖=结点数-最大匹配)。

#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
#include <algorithm>
#include <vector>
#include <math.h>
#include <map>
#include <queue>
#include <stack>
#include <set>
#define maxn 5005
#define LL long long
#define Ld __int64
#define eps 0.000001
#define INF 999999999
using namespace std;

int n,m;
vector<int> G[maxn*2];
int dfn[maxn*2],low[maxn*2],sccno[maxn*2],scc_cnt;
int indx;
bool vis[maxn*2];
int flag[maxn*2];
bool f[maxn][maxn];
stack<int> s;

void Tarjan(int u)
{
	indx++;
	dfn[u]=low[u]=indx;
	s.push(u);
	for(int i=0;i<G[u].size();i++)
	{
		int v=G[u][i];
		if(!dfn[v])
		{
			Tarjan(v);
			low[u]=min(low[u],low[v]);
		}
		else if(!sccno[v])
		{
			low[u]=min(low[u],dfn[v]);
		}
	}
	if(low[u]==dfn[u])
	{
		scc_cnt++;
		for(;;)
		{
			int x=s.top();
			s.pop();
			sccno[x]=scc_cnt;
			if(x==u)
				break;
		}
	}
}

void find_scc(int n)
{
	indx=scc_cnt=0;
	memset(sccno,0,sizeof(sccno));
	memset(dfn,0,sizeof(dfn));
	for(int i=1;i<=n;i++)
	{
		if(!dfn[i])
			Tarjan(i);
	}
}

bool DFS(int a)
{
	for(int i=1;i<=n;i++)
	{
		if(f[a][i]==1 && !vis[i])
		{
			vis[i]=1;
			if(flag[i]==0 || DFS(flag[i]))
			{
				flag[i]=a;
				return true;
			}
		}
	}
	return false;
}

int match()
{
	int ans=0;
	memset(flag,0,sizeof(flag));
	for(int i=1;i<=n;i++)
	{
		memset(vis,0,sizeof(vis));
		if(DFS(i))
			ans++;
	}
	return scc_cnt-ans;							//答案=联通块-最大匹配
}

int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++)
			G[i].clear();
		while(m--)
		{
			int u,v;
			scanf("%d%d",&u,&v);
			G[u].push_back(v);
		}
		find_scc(n);
		memset(f,0,sizeof(f));
		for(int i=1;i<=n;i++)						//缩点,建立新图
		{
			for(int j=0;j<G[i].size();j++)
			{
				int v=G[i][j];
				if(sccno[i]!=sccno[v])
				{
					f[sccno[i]][sccno[v]]=1;
				}
			}
		}
		printf("%d\n",match());
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值