1.题目描述
数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost[i](索引从0开始)。
每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。
您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。
示例 1:
输入: cost = [10, 15, 20]
输出: 15
解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
示例 2:输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出: 6
解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
注意:cost 的长度将会在 [2, 1000]。
每一个 cost[i] 将会是一个Integer类型,范围为 [0, 999]。
2.解法
解法一:动态规划
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
pre1 = 0
pre2 = 0
for c in cost:
f = c + min(pre1, pre2)
pre2 = pre1
pre1 = f
return min(pre1, pre2)