机器学习
K-Stephen
热爱数据科学的超级英雄迷
展开
-
【面经三】机器学习和深度学习考点集锦
机器学习L1和L2正则的区别,以及它们各自的性质 如何解决样本不均衡问题 特征降维和特征选择 PCA、SVD、LDA做特征降维 特征选择 https://www.zhihu.com/question/28641663/answer/110165221 Filter 方差选择法 相关系数法 卡方检验 互信息法 Wrapper ...原创 2019-12-17 16:25:59 · 350 阅读 · 0 评论 -
智能客服机器人综述
1.思维导图2.参考资料(1)https://github.com/NLP-LOVE/ML-NLP/tree/master/Project/18.%20Intelligent%20Customer%20Service(2) 《智能客服机器人之客户服务行业最佳实践》,Gartner...原创 2019-10-30 11:44:05 · 948 阅读 · 0 评论 -
【机器学习一】梯度下降法
本系列博客是笔者为了记录学习机器学习过程中的疑问点,可能没有系统性,以问题记录为主。原创 2019-09-20 14:44:41 · 166 阅读 · 0 评论 -
【机器学习二】线性回归
1.解析解与近似解2.为什么采用梯度下降求解而不是矩阵运算原创 2019-09-27 11:08:44 · 108 阅读 · 0 评论 -
【机器学习三】机器学习模型的误差
1.什么是偏差,什么是方差?偏差和方差指的是训练好的机器学习模型在测试集上的误差,偏差指的是与测试集结果的准,方差指的测试集预测结果的稳定性,也就是确。2.什么是欠拟合,什么是过拟合?欠拟合:在训练集和测试集上准确率都低过拟合:在训练集上表现非常优异,在测试集上准确率非常低3.欠拟合、过拟合与偏差、方差的关系?偏差大,方差小:欠拟合偏差小,方差大:过拟合4.如何...原创 2019-09-27 11:12:00 · 673 阅读 · 0 评论 -
【通俗易懂】机器学习中 L1 和 L2 正则化的直观解释
机器学习中,如果参数过多,模型过于复杂,容易造成过拟合(overfit)。即模型在训练样本数据上表现的很好,但在实际测试样本上表现的较差,不具备良好的泛化能力。为了避免过拟合,最常用的一种方法是使用使用正则化,例如 L1 和 L2 正则化。但是,正则化项是如何得来的?其背后的数学原理是什么?L1 正则化和 L2 正则化之间有何区别?本文将给出直观的解释。1. L2 正则化直观解释L2 正则...转载 2019-09-27 16:16:16 · 271 阅读 · 0 评论 -
【机器学习四】模型产生过拟合的原因
数据有噪声 训练数据不足,有限的训练数据 训练模型过度导致模型非常复杂注1:L1和L2正则化解决原因1和2导致的过拟合问题,无法解决训练数据不足带来的过拟合注2:详细解释可参考https://zhuanlan.zhihu.com/p/26122044...原创 2019-09-27 21:40:29 · 267 阅读 · 0 评论