摘要
焦虑症状可能会影响大脑对错误的加工方式。然而,许多研究报告的结果相互矛盾且不可再现,因此大脑对错误的反应(即错误相关负波[ERN];错误相关正波[Pe])与特定焦虑症状的对应关系仍不清楚。本研究收集了171名被试的16个焦虑维度自述评分,并采集了他们的EEG信号。然后,使用机器学习(1)识别与ERN/Pe增大有关的主要症状;(2)评估传统统计方法的泛化能力。本研究结果表明,ERN的振幅以及其他大脑信号变化编码了与个体错误加工相关的信息。泛化性检查结果表明,改变结果验证方法可以获得反映个体差异和临床有用生物标志物的稳健信息。
引言
认知和情感神经科学研究的主要目标是建立大脑结构与脑-行为活动之间的关系。尽管这种脑-行为关联是大多数认知神经生理学研究的重点,但研究报告的结果缺乏一致性。标准统计分析通常包括检验组间或条件间的差异,结果常以均值、标准差和置信区间来描述。但基于这种组水平进行推断可能会导致误导性结论。
正如Rouder及其同事(2021)所报告的那样,只有当群体中的所有个体都表现出相同方向的效应时,从均值进行推断才有意义。在这种情况下,效应既可以解释,也可以表示为感兴趣变量的函数;然后可以使用相同的函数来预测所有个体的效应。当群体中的个体表现出相反方向的效应或部分群体显示无效应时,情况就变得更加复杂了。这种复杂的个体差异表明,被解释的现象比从群体研究中看到的更为复杂,因此通过群体比较或简单的线性回归来分析和预测这种现象可能会产生误导性的结果。
为了解决实证研究中常用的统计方法的局限性,神经科学和实验心理学开始高度关注机器学习(ML)方法。ML技术可以提高结果的泛化性和稳健性。本研究旨在使用机器学习框架来预测人类大脑活动中与焦虑相关的症状。在这里,本研究重点关注焦虑的不同维度以及与错误相关的大脑反应。
方法
参与者
共171名健康被试(120名女性和51名男性)参加了这项研究,年龄在18-40岁之间(M=22.75岁,SD=3.60)。无药物、神经或精神疾病史,并且视力正常或已矫正至正常水平。被试的平均教育年限为15.16年(SD=2.56)。在分析之前,有8名被试因EEG数据总体质量较差而被排除。因为在小样本数据中进行机器学习分析需要高质量的数据。为确保EEG数据的质量,任何包含伪迹的数据段都被剔除。因此,有33名被试的数据因无伪迹试次段数量少于5个而被排除。最终样本包括130名被试(93名女性和37名男性)的EEG数据,这些被试的年龄在18-40岁之间(M=22.88岁,SD=3.76),平均教育年限为15.08年(SD=2.49)。
程序和任务
记录被试在执行一项快速的颜色+方向go/no-go判别任务时的EEG信号,该任务在之前的几项研究中得到了验证。该任务的实验范式如图1所示。完成任务后,让被试填写一系列自我报告问卷。所有被试签署了书面知情同意书,并获得了相应报酬。本研究遵循《赫尔辛基宣言》中的伦理原则,并获得了波兰雅盖隆大学哲学院研究伦理委员会的批准。
图1.go/no-go范式及其条件:(A)Go试次;(B)正确反应的no-go试次;(C)不正确的no-go试次,即错误反应。
测量量表
从被试填写的量表中选择以下维度进行焦虑相关现象的分析:反刍思维量表,反刍量表(RRQ);状态-特质焦虑量表,特质量表(STAI);抑郁-焦虑-压力量表-21,焦虑量表(DASS-21);行为抑制系