
脑电数据分析
文章平均质量分 64
茗创科技
这个作者很懒,什么都没留下…
展开
-
基于DDTBOX,使用线性支持向量回归(SVR)从ERP数据中解码连续变量
导读事件相关电位(ERP)数据的多变量分类分析是预测认知变量的强大工具。然而,分类通常仅限于分类变量,并未充分利用连续数据,如反应时间、反应力或主观评分。另一种方法是支持向量回归(SVR),它使用单试次数据来预测感兴趣的连续变量。在这篇教程式的文章中,研究者演示了如何在决策解码工具箱(DDTBOX)中实现SVR。为了更详细地说明结果如何取决于特定的工具箱设置和数据特征,本研究报告了两个模拟研究(类似于真实的EEG数据和真实的ERP数据集)的结果,并预测了一系列分析参数的连续变量。原创 2022-11-09 21:28:40 · 519 阅读 · 0 评论 -
PNAS:人类头皮记录电位的时间尺度
导读人类的许多行为都是由在不同时间尺度上发生的共同过程所支配的。标准的事件相关电位分析假设有关实验事件的响应持续时间是固定的。然而,最近对动物的单个单元记录显示,在需要灵活计时的行为中,神经活动尺度跨越了不同的持续时间。本研究采用了一种通用的线性建模方法,使用固定持续时间和可变持续时间回归器的组合,以分离人类脑磁/脑电图(M/EEG)数据中的固定时间和缩放时间成分。研究者利用这一点来揭示人类头皮记录电位在四个独立EEG数据集中的一致时间尺度,包括时距知觉、产生、预测和基于价值的决策。原创 2022-11-01 21:36:22 · 686 阅读 · 0 评论 -
The Neuroscientist | 从连通性预测大脑活动:最新进展和应用
导读人脑由多个离散的、功能特异的区域组成,这些区域相互连接以形成大规模的分布式网络。使用先进的脑成像方法和机器学习分析方法,最近的研究表明在执行各种认知任务时,可以从任务独立的大脑连接模式中准确预测区域大脑活动。在这篇综述文章中,首先从结构连接(即白质连接)和功能连接(即时间同步的无任务激活)提出了大脑活动可预测性的证据。然后,讨论了这些预测对临床人群(例如被诊断患有精神疾病或神经系统性疾病的患者)和大脑-行为关联研究的影响。原创 2022-10-23 23:05:35 · 1020 阅读 · 0 评论 -
NeuroImage:通信辅助技术削弱了脑间同步?看来维系情感还得面对面互动才行...
导读向通信辅助技术的转变已经渗透到人类社会生活的各个方面。然而,它对社会脑的影响仍然是未知的,其影响可能在发育过渡期特别强烈。本研究采用双脑视角,并利用超扫描EEG测量了62对母子(儿童年龄:M=12.26,范围10-14,向青春期过渡的阶段)在实时面对面互动vs技术辅助远程交流期间的脑间同步性。在beta(14-30Hz)范围内,实时互动条件下的额叶和颞叶区域之间具有9个显著的脑间连接。母亲的右侧额叶区域与孩子的左右额叶、颞叶和中央区域相连,表明其在双脑动态中起着调节作用。原创 2022-10-21 14:45:45 · 489 阅读 · 0 评论 -
脑网络及其功能意义
导读要了解大脑的认知功能,就必须了解神经元是如何在局部、不同脑区以及整个大脑的大规模范围内相互连接的。局部处理和全局整合之间的平衡为复杂的处理模式提供了支持,这些模式是高阶认知功能的基础,同时确保了大脑的灵活性、稳健性和功能多样化。在这种情况下,网络范式为研究脑区之间的相互作用以及使用强大的计算工具解释功能网络的复杂拓扑结构提供了理论框架。本文回顾了研究大脑功能网络的当前技术水平,并总结了用于量化网络特征的方法进展。同时概述了主要的神经成像技术,探讨了目前有关认知功能和功能障碍的核心大规模网络的知识。原创 2022-10-17 09:30:35 · 4622 阅读 · 0 评论 -
综述 | 深度学习在fNIRS中的应用
导读意义:光学神经影像学已成为一种成熟的临床和研究工具,用于监测大脑皮层的激活。值得注意的是,功能性近红外光谱(fNIRS)研究的结果在很大程度上取决于所采用的数据处理流程和分类模型。最近,深度学习(DL)方法在许多生物医学领域的数据处理和分类任务中表现出快速和准确的性能。目的:本文旨在回顾新兴的深度学习(DL)在fNIRS研究中的应用。方法:本文将首先介绍一些常用的深度学习技术。然后,总结了当前深度学习在脑机接口、神经损伤诊断和神经科学发现等领域的研究进展。原创 2022-10-14 13:59:13 · 3308 阅读 · 0 评论 -
三种时空模式下的全脑功能组织
导读静息态功能磁共振成像技术似乎对人脑的大规模组织产生了不同的见解。大脑的大规模组织可以分为两大类:功能连接结构的零滞后表征和行波或传播结构的时滞表征。本研究试图以三种低频时空模式的形式整合这两个类别中观察到的现象,这些低频时空模式由驻波和行波动力学组成。结果表明,功能连接梯度、任务正向/任务负向的反相关模式、全局信号、时滞传播模式、准周期模式和功能连接组网络结构,是这三种时空模式的特点。这些模式说明了作为功能连接分析基础的大部分全局空间结构,并整合了此前认为不同的静息态功能MRI中的现象。原创 2022-10-14 11:15:36 · 1857 阅读 · 0 评论 -
磁共振指纹:一种新颖的定量磁共振技术
前言磁共振指纹(MRF,MR fingerprinting)是一种新颖的定量磁共振技术,可以在较短的扫描时间内同时量化多种组织特性。自2013年首次发表在《Nature》杂志上以来,该技术已经证明了在5到10分钟的时间内进行容积多参数成像的高扫描效率,在扫描身体不同部位(如大脑、肌肉骨骼系统、心脏等方面)的高稳健性,以及在模型和人体验证中的高准确性和可重复性。因此,MRF使定量磁共振成像在临床和科研领域的广泛应用和标准化方面,具有很大的潜力。MRF的基本概念类似于指纹识别技术.原创 2022-10-13 20:09:03 · 2447 阅读 · 0 评论 -
图论在fNIRS超扫描范式中的应用
导读超扫描是研究社会互动和情感联系等神经生物学基础的一个很有前途的工具。最近,图论方法,如模块化,被提出来用于估计大脑之间的全局同步。本文提出用自举模块化检验来确定大脑对之间是否被共同激活。采用fNIRS收集了由教师和学龄前儿童(五对)在执行互动任务时的数据,将该检验作为筛选工具应用于大脑的前额叶皮层和颞顶交界处。在此应用中,图节点中心性度量确定了教师的语言和数字加工与儿童的语音加工之间的二元同步关系,对这些指标的分析可为人际交互的神经生物学基础提供进一步的见解。原创 2022-10-13 17:26:11 · 821 阅读 · 0 评论 -
fNIRS | 非平稳波形的预处理方法
导读本文提出了功能性近红外光谱(fNIRS)数据预处理的算法。该方法可以自动识别噪声通道,并采用非平稳滤波步骤来去趋势和去除高频干扰源。使用最近发布的累积曲线拟合近似(CCFA)算法对信号进行滤波,以减少由于fNIRS数据的非平稳性导致的失真效应。将输出结果与基于离散余弦变换(DCT)的滤波、低通滤波(LPF)和带通滤波(BPF)方法进行比较。结果表明,与常用或常规方法相比,基于CCFA的滤波具有更大的信噪比(SNR)改善。原创 2022-10-11 13:23:04 · 2820 阅读 · 0 评论 -
婴儿fNIRS数据的固定阵列和功能兴趣通道的方法比较
导读功能性近红外光谱(fNIRS)越来越多地用于研究婴儿的大脑功能,但婴儿fNIRS数据分析技术的发展和标准化并没有跟上其他技术进步的步伐。本研究使用不同的分析方法量化和比较了婴儿的fNIRS数据[包含两个独立的fNIRS数据集(6-9个月大的婴儿)和模拟婴儿fNIRS数据集]。对于每种方法,研究者将传统的固定阵列分析结果与几种功能兴趣通道(fCOI)分析方法进行了对比。此外,还测试了改变fCOI定义中潜在数据通道的数量和解剖位置的影响。原创 2022-10-11 10:22:39 · 899 阅读 · 0 评论 -
资源分享 | 利用机器学习进行高级MRI分析
BrainIAK中目前包含了多种技术:主体间相关(ISC)和主体间功能连接(ISFC),通过共享响应模型(SRM)的功能对齐,全相关矩阵分析(FCMA),贝叶斯版本的表征相似性分析(BRSA),使用隐马尔可夫模型的事件分割,地形因子分析(TFA),反向编码模型(IEMs),实时动态磁共振成像,使用真实数据噪声特征的fMRI数据模拟器(fmrisim),以及一些新兴方法。统计模式识别是机器学习中的一个领域,它涉及通过使用计算机算法自动发现数据中的规律,并利用这些规律来采取行动,例如将数据分类成不同的类别。原创 2022-10-10 15:33:22 · 1277 阅读 · 0 评论 -
HAPPE+ER:一款让脑电研究人员“更快乐”的软件,可用于事件相关电位(ERP)分析的标准化预处理管道
导读事件相关电位(ERP)设计是用脑电图(EEG)检测神经认知功能的常用方法。然而,传统的ERP数据预处理方法是手动编辑,这是一个主观且耗时的过程。最近创建了许多自动化通道,以满足EEG数据预处理的标准化、自动化和量化的需求;然而,很少有人针对ERP分析进行优化。本研究提出并验证了HAPPE+事件相关软件(HAPPE+ER)【谐音“happier”,意为“更快乐”】,这是一个标准化和自动化的预处理流程,并针对整个生命周期内的ERP分析进行了优化。原创 2022-09-28 13:01:23 · 1416 阅读 · 0 评论 -
心理学实验必备 | 脑电实验流程及注意事项
文章来源于微信公众号(茗创科技),欢迎有兴趣的朋友搜索关注。实验前准备阶段招募被试:在招募被试通知里写明实验任务、实验时长、实验时间、实验地点、实验报酬、实验要求、招募人数(需要多少人参与实验可提前告知)。被试登记:将愿意前来参与实验的被试登记在《被试登记表》上,如下表所示。正式实验前一天:事先和被试确认好正式实验的具体时间;嘱咐被试不要戴隐形眼镜;如果是女被试,需嘱咐其最好不要化妆;不要带耳环(也可以在实验室再取下);告知被试正式实验开始前需要洗头,一般是让被试来到实验室洗头(防止原创 2022-03-17 13:48:11 · 10347 阅读 · 2 评论 -
Science DB | 如何科学地存储海量数据?
文章来源于微信公众号(茗创科技),欢迎有兴趣的朋友搜索关注。对于容量快速增长、日趋多元化的大量数据,数据的存储是一个令人棘手的问题。但是在科学实验、医疗保健、社交网络和电子商务等实际应用中,存储是大数据分析的第一步。曾经,可用的大数据存储技术无法为持续增长的异构数据提供一致、可扩展和可用的解决方案。现在,有这样一个科学数据银行摆在你面前,为你提供海量数据存储,何不一试?今天给大家推荐的这个数据银行就是ScienceDB,这是中国科学院计算机网络信息中心自主研发的致力于打造国际化的科学原创 2021-11-11 09:11:01 · 1162 阅读 · 0 评论 -
文献合集 | 超扫描之fNIRS / fMRI / EEG / MEG
文章来源于微信公众号(茗创科技),欢迎有兴趣的朋友搜索关注。在很多情况下,一个大脑中的神经过程与另一个大脑中的神经过程是通过环境传递的信号耦合。大脑间的耦合塑造了社会网络中每个个体的行为,从而导致更为复杂的社会交互。而人类的生存与发展,都是在人与人之间的社会交互作用中实现的,通过社会交往,个体接受各种社会影响,掌握社会规范,学习社会行为。目前,实验室实验通常是将人或动物与自然环境隔离,把他们放在一个封闭的房间里,只与计算机程序进行交互。这种以自我为中心的研究框架让人想起托勒密的地心说。从人类文明早期原创 2021-11-10 11:38:46 · 1468 阅读 · 0 评论 -
基于汉宁窗、多窗口和小波的时频分析
文章来源于微信公众号(茗创科技),欢迎有兴趣的朋友搜索关注。如何使用汉宁窗、多窗口和小波对单个对象的脑电信号进行时频分析?(本文以MEG数据为例)相信你看完这篇文章,会有所收获。我们先来认识一下汉宁窗、多窗口和小波分别是什么:(1)汉宁窗:其实汉宁窗的英文写法有两种:hann/hanningwindow。目前这两种表述都可以,而且MATLAB中也存在hann和hanning两个函数。汉宁窗是窗函数之一,是升余弦窗的一个特例。汉宁窗可以看作是3个矩形时间窗的频谱之和,或者说是3个sinc(t)型函原创 2021-11-10 11:20:34 · 4654 阅读 · 1 评论 -
超详细TMS-EEG数据处理教程(下)
文章来源于微信公众号(茗创科技),欢迎有兴趣的朋友搜索关注。上一期的文章TMS-EEG数据处理教程(上)中详细地介绍了TMS伪影类型和预处理步骤。这期主要讲了完成数据预处理后,再进行一些(后)处理步骤,如过滤、去趋势、去均值和降采样。但要注意的是,一些分析步骤可能需要对数据进行不同的处理。例如,当查看经颅磁刺激诱发电位(TEPs)时,你可能想要滤除数据中的高频噪声,但在执行时频分析时(滤除高频噪声)是不必要的;你可能也希望对数据进行去趋势操作,但这同样不建议用于分析TEPs。幸运的是,这些函数(例如原创 2021-11-10 11:03:43 · 2173 阅读 · 0 评论 -
超详细TMS-EEG数据处理教程(上)
文章来源于微信公众号(茗创科技),欢迎有兴趣的朋友搜索关注。本教程示例了被试收缩或放松对侧手时,如何处理对初级运动皮层(M1)进行经颅磁刺激(TMS)的脑电图(EEG)。去除TMS伪影最好的办法是要先进行预处理。当TMS伪影去除步骤完成后,就可以继续进行EEG分析了。在本教程中,所要解决的研究问题是手部的预收缩是否会影响脑电图中的TMS诱发电位(TEP)。EEG信号分析需要干净的数据。但这并不简单,因为同时应用TMS和EEG的难点是TMS线圈电磁场会产生较大的伪影。所以在联合TMS-EEG实验中,.原创 2021-11-10 10:56:28 · 4412 阅读 · 4 评论 -
ERPLAB脑电数据分析教程
1、安装与预设实战数据2、背景概念DataSet:被试数据导入EEGLAB称之为DataSet,各个预处理步骤会更新DataSetERPsets:对各个Bin对应的分段进行叠加平均,生成的平均ERP波形对应于一个ERPset。ERPset可以存储在磁盘上,包含了各种条件下的ERP波形Bins:一种条件(或条件的组合)的刺激对应于一个Bin3、ERPLAB处理数据的步骤 (1)导入数据 eeglab ...原创 2021-09-18 09:35:40 · 18547 阅读 · 6 评论 -
脑电数据预处理看这篇就够了
01脑电数据分析预处理步骤1.(Import data)导入数据2.(Channel locations)电极定位3.(Select data)剔除无用电极4.(filter the data)滤波5.(Extract epochs and Remove baseline)分段和基线校正6.Artifact rejection (bad channel and epoch) (剔除坏段、插值坏导)7.(Independent component analysis, ICA)独立.原创 2021-07-06 12:03:54 · 24898 阅读 · 0 评论 -
代码分享|静息态频域各指标的计算,建议收藏
大家好,我是茗创科技的工程师周翊,静息态数据在做频域分析的时候常用的指标有四个实现代码如下:% 代码由茗创科技工程师 周翊编写 并无偿分享使用 转载注明来源% 更多需要可加微信了解% 茗创科技专注于脑影像数据处理,涵盖(fMRI,结构像,DTI,ASL,EEG/ERP,FNIRS,眼动)等,也欢迎% 了解茗创科技的课程及数据处理服务,可添加微信号 17373158786 进行咨询。% Written By Yizhou% Using the code without pr...原创 2021-07-06 10:54:40 · 1067 阅读 · 1 评论 -
代码分享|时频分析时绘制热图进行平滑的代码
大家好,我是茗创科技的周翊,近日分析数据的时候碰到一批采样率比较低,虽然对于分析的频段已经足够了,但是画出来的时频图却不好看,如下左图,本着对客户负责的原则,就想在现有的数据基础上给客户进行平滑作图,就有了右图的效果,是不是瞬间好看了很多?% 代码由茗创科技工程师 周翊编写 并无偿分享使用 转载注明来源% 更多需要可加微信了解% 茗创科技专注于脑影像数据处理,涵盖(fMRI,结构像,DTI,ASL,EEG/ERP,FNIRS,眼动)等,也欢迎% 了解茗创科技的课程及数据处理服务...原创 2021-07-06 10:45:43 · 1267 阅读 · 0 评论 -
neauscan自带软件scan导出的.avg格式文件如何在matlab里面画图
新手在处理脑电的时候不可避免的会使用scan这样的商业软件,然后处理完数据以后可能会想导入到matlab进行画图,可是商量软件导出的文件格式可能并不那么自由,这里提供一个将scan处理完的脑电数据导出到matlab并画图的脚本如下% 代码由茗创科技工程师编写%% Written By Yizhou% Using the code without proper understanding the code and relevant background% of EEG may lead to c原创 2021-05-05 23:59:30 · 775 阅读 · 2 评论 -
批量重命名脑电EEG文件
有些人在做脑电实验的时候喜欢起一些奇奇怪怪的名字,这就导致某些数据可能在导入的时候报错,可是错已经犯下了,就改呗,这里刚好有需要,便写了一个批量更改数据名称的代码,其实也非常简单,但是仅针对于只有一个文件的脑电格式,如.edf;.cnt这些可以直接改文件名的脑电文件而像.vhdr+.eeg+.vmark这种绑定式的文件就不建议更改此脚本对其它文件依然有用%% 代码由茗创科技工程师周翊编写% Written By Yizhou% Using the code without proper un原创 2021-05-05 23:58:17 · 980 阅读 · 0 评论 -
对数化绘制P值地形图
正常使用topplot绘制P值图是这样的,P值越大,图片越亮但是因为P值本身的原因,P值需要越小越好,这就需要改变绘图的思路,可以对P值求一个log值再求负数,画在地形图上,就对显著的区域一目了然分享绘图代码如下运行环境依然是Matlab2013B+eeglab13% Written By Yizhou% Using the code without proper understanding the code and relevant background% of EEG may lead原创 2021-01-25 23:00:42 · 805 阅读 · 0 评论 -
脑电EEG静息态数据重新分段
静息态数据在处理过程中通常需要分段,一般会进行2s一段的切分,但是可能在后面的分析中这种分段方式不太适用,需要拼接成连续分段或者重新分段,此段代码就用于对数据进行拼接(重新分段)%% 重新分段% Written By Zhouyi% Using the code without proper understanding the code and relevant background% of EEG may lead to confusion, incorrect data analyses,or原创 2021-01-25 09:44:46 · 6536 阅读 · 4 评论 -
EEG静息态频域指标的计算代码
费话不多,直接上代码% Spectral_EEGclear all; clc; Fs=1000; %% sampling rateL=1000; %% signal length for FFTT=1/Fs;t=(0:L-1)*T;NFFT=2^nextpow2(L);f=Fs/2*linspace(0,1,NFFT/2+1);f_idx=find(f<=30); %% region of interestSubj=1:10;for i=1:length(Subj)原创 2021-01-24 16:56:04 · 1241 阅读 · 0 评论 -
关于短时傅立叶变换的基线的选取以及可靠频率点的关系
针对基线校正时的基线长度,短时傅立叶变换时,整个时间窗内傅立叶变换的结果会赋值给时间窗中间时间点。这样一来,基线开头和结尾各有一半时间窗长度的短时傅立叶结果是不太可靠的。例如,如果基线是-500~0ms,时间窗是200ms,那么-500~-300ms内的数据做傅立叶变换的结果会被赋值给-400ms这个时间点。-500~-400ms的数据缺乏足够的数据点,这段区间内的短时傅立叶结果是通过算法在-500ms之前增添时间点后才算出来的,因此可靠性一般。同样,-100~0ms也缺乏足够的数据点,同样要把0ms之后的原创 2021-01-23 09:56:02 · 524 阅读 · 0 评论 -
EEG实验后统一两种不同的脑电帽的电极点数据
在不同设备或者使用了不同种帽子,可能会造成电极点数据顺序不一样,这里提供了一个自己编写的一个脚本,用来统一两种不同帽子的顺序,其中两个帽子的电极点需要自行修改,实现环境为matlab2013+eeglab13% Written By Yizhou 代码仅供参考,谨慎使用% Using the code without proper understanding the code and relevant background% of EEG may lead to confusion, incorre原创 2021-01-22 19:18:02 · 1135 阅读 · 0 评论 -
给丢失maker的脑电数据添加marker
给丢失marker的脑电数据补上marker,亡羊补牢虽未晚,防患未然更可贵,建议大家做实验之前还是要好好测试程序,不要出现数据采完了才发现没有marker的情况,示例代码演示的是一个等距离间隔的marker添加,大家按照自己的行为数据适当修改% Written By siying tech Yizhou% Using the code without proper understanding the code and relevant background% of EEG may lead to c原创 2021-01-22 20:14:45 · 2922 阅读 · 2 评论 -
ERP提取平均波幅到excel中
%% 导出平均波幅数据到exceltime_N1=find((EEG.times>=80)&(EEG.times<=130));%%%选取想要分析的时间段time_P3=find((EEG.times>=300)&(EEG.times<=400));electrode_choice=[5,35,6,36,7,38,10,39,11,40,14,42,15,43,16,45,19,62,20,46,23,48,24,49,25]; %%%想要导出的电极点的序号,这原创 2021-01-22 19:11:49 · 1059 阅读 · 1 评论