论文学习
文章平均质量分 88
qiaoqiao2332
钻进钱眼儿里的村姑
展开
-
论文复现与理解记录:Weakly-Supervised Unconstrained Action Unit Detection via Latent Feature Domain
论文:Weakly-Supervised Unconstrained Action Unit Detection via Latent Feature Domain源码:https://github.com/ZhiwenShao/ADLD复现结果:采用BP4D作为source database,EmotioNet作为dest database训练弱监督(–mode=‘weak’)模型,在E...原创 2019-10-28 02:20:39 · 867 阅读 · 7 评论 -
论文翻译 BING: Binarized Normed Gradients for Objectness Estimation at 300fps
通过训练通用的对象估计方法来产生一组候选对象窗口,能够加速传统的滑动窗口对象检测方法。我们观察到一般对象都会有定义完好的封闭轮廓,而且通过将相关图像窗口重置为固定大小,就可以通过梯度幅值进行区分。基于以上的观察以及复杂度的考虑,为了明确训练方法,我们将窗口固定为8*8的,并将梯度幅值转化为一个简单的64维的特征来描述这个窗口。 我们进一步说明这个二值化赋范特性(BING),它可以很有效的用于一般对象估计。而且只需要一些原子操作(例如加法,按位移动等),我们使用的是PASCAL VOC 2007数据集,这转载 2016-08-14 20:08:23 · 1649 阅读 · 0 评论 -
2015 ICCV以及ICCV Workshop中有关Action Units(AU)检测和Facial landmark检测的文章总结
好记性不如烂笔头,记录一下重点部分,方便以后查找 有AU标记的数据集:CK+,DISFA,BP4D 有关AU检测的文章整理1,ICCV 2015 HSHTL, Ruiz A, Weijer J V D, Binefa X. From Emotions to Action Units with Hidden and Semi-Hidden-Task Learning[C]// I...原创 2017-04-10 22:52:11 · 4249 阅读 · 0 评论 -
【笔记】Action Unit Detection with Region Adaptation Multi-labeling Learning and Optimal Temporal Fusing
原文:https://arxiv.org/abs/1704.030672017,CVPR上面的,最近重新读了一遍,之前没有细读。 文章中说的三大贡献分别是Region Adaptation(针对区域region的ROI Nets) ; Multi-labeling Learning(多AU一起学习); Optimal Temporal Fusing(时序信息)我理解这篇文章优势在以...原创 2017-10-28 17:33:55 · 4087 阅读 · 21 评论 -
3DCNN参数解析:2013-PAMI-3DCNN for Human Action Recognition
3DCNN参数解析:2013-PAMI-3DCNN for Human Action Recognition参数分析Input:7 @ 60 ×\times× 40, 7帧,图片大小60 ×\times× 40hardwired: H1产生5通道信息,分别是gray, gradient-x, gradient-y, optflow-x, optflow-y。前三个对于每一张图片都计算得...原创 2018-10-30 11:24:23 · 967 阅读 · 0 评论