【笔记】Action Unit Detection with Region Adaptation Multi-labeling Learning and Optimal Temporal Fusing

原文:https://arxiv.org/abs/1704.03067

2017,CVPR上面的,最近重新读了一遍,之前没有细读。

 

文章中说的三大贡献分别是Region Adaptation(针对区域region的ROI Nets) ; Multi-labeling Learning(多AU一起学习); Optimal Temporal Fusing(时序信息)

我理解这篇文章优势在以下3点:

1,ROI Nets,虽然有人做过region提升AU检测,但是这篇文章选取region的方式更好,实际效果也更好,之前别人没有这么选的;

2,这篇文章是AU检测领域第一个同时利用AU的三大特性合起来这三点的,提升的确也比较明显;

3,文章实验部分对三个方面每个做了具体的实验和讨论,这部分做得很好

 

 

ROI Nets:具体每个AU只跟某一个很小的局部有关,单个AU分开考虑:每个区域分开训练

multi-label:AU彼此之间的相关性

LSTM:时序信息

 

 

 

 

思路出发点:

(AU本身的特性):

1,脸部不同组件特征不同

2,一张图有多个AU

3,所有的AU都是一个动作在一个时间序列中的

(外在技术储备、可实施性):

1,CNN在图片任务中十分有效

2,fast/fasterRCNN的优异表现(region)

3,LS

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 21
    评论
我们的分类器可以秘密满足多源域适应。 多源域适应是指在训练模型时,通过利用来自多个不同领域的数据来提高分类器在目标领域上的性能。传统的领域适应方法通常要求知道源域和目标域的标签信息,而且需要训练过程中显式地使用源域数据。然而,在一些情况下,我们可能无法取得源域数据或者不希望显示地使用源域数据。 我们的分类器具有秘密满足多源域适应的能力。它可以在不泄露源域数据的情况下,利用多个源域的数据进行训练,从而提高在目标域上的分类性能。这种方法的优势在于保护了源域数据的隐私,同时提高了分类器的泛化能力。 我们的分类器使用了一种先进的深度学习技术,可以在没有源域数据的情况下进行域适应。它借助于迁移学习和领域自适应的理论,能够自动学习源域和目标域之间的差异,并将这些差异应用于目标域的分类任务中。 具体而言,我们的分类器采用了一种深层神经网络结构,通过共享层和特定领域的适应层,实现了对多个源域数据的学习和域适应。在训练过程中,我们使用了无监督的领域适应方法,通过最小化源域数据和目标域数据之间的领域差异,来提高分类器在目标域上的性能。 通过使用我们的分类器,用户可以在不泄露源域数据的情况下,实现秘密的多源域适应。这对于一些敏感数据或隐私保护方面的需求是非常有价值的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值