Aizu 2223

Time Limit:8000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

Description

There is a frog living in a big pond. He loves jumping between lotus leaves floating on the pond. Interestingly, these leaves have strange habits. First, a leaf will sink into the water after the frog jumps from it. Second, they are aligned regularly as if they are placed on the grid points as in the example below.


Figure 1: Example of floating leaves

Recently, He came up with a puzzle game using these habits. At the beginning of the game, he is on some leaf and faces to the upper, lower, left or right side. He can jump forward or to the left or right relative to his facing direction, but not backward or diagonally. For example, suppose he is facing to the left side, then he can jump to the left, upper and lower sides but not to the right side. In each jump, he will land on the nearest leaf on his jumping direction and face to that direction regardless of his previous state. The leaf he was on will vanish into the water after the jump. The goal of this puzzle is to jump from leaf to leaf until there is only one leaf remaining.

See the example shown in the figure below.

In this situation, he has three choices, namely, the leaves A, B and C. Note that he cannot jump to the leaf D since he cannot jump backward. Suppose that he choose the leaf B. After jumping there, the situation will change as shown in the following figure.

He can jump to either leaf E or F next.

After some struggles, he found this puzzle difficult, since there are a lot of leaves on the pond. Can you help him to find out a solution?

Input

H W
c
1,1 ... c1,W
.
.
.
cH,1 ... cH,W

The first line of the input contains two positive integers H and W (1 ≤ H,W ≤ 10). The following H lines, which contain W characters each, describe the initial configuration of the leaves and the frog using following characters:

  • '.’ : water
  • ‘o’ : a leaf
  • ‘U’ : a frog facing upward (i.e. to the upper side) on a leaf
  • ‘D’ : a frog facing downward (i.e. to the lower side) on a leaf
  • ‘L’ : a frog facing leftward (i.e. to the left side) on a leaf
  • ‘R’ : a frog facing rightward (i.e. to the right side) on a leaf

You can assume that there is only one frog in each input. You can also assume that the total number of leaves (including the leaf the frog is initially on) is at most 30.

Output

Output a line consists of the characters ‘U’ (up), ‘D’ (down), ‘L’ (left) and ‘R’ (right) that describes a series of movements. The output should not contain any other characters, such as spaces. You can assume that there exists only one solution for each input.

Sample Input 1

2 3
Uo.
.oo

Output for the Sample Input 1

RDR

Sample Input 2

10 10
.o....o...
o.oo......
..oo..oo..
..o.......
..oo..oo..
..o...o.o.
o..U.o....
oo......oo
oo........
oo..oo....

Output for the Sample Input 2

URRULULDDLUURDLLLURRDLDDDRRDR

Sample Input 3

10 1
D
.
.
.
.
.
.
.
.
o

Output for the Sample Input 3

D
#include <iostream>
#include <string>
#include <string.h>
#include <fstream>

using namespace std;

#define MAXN 11

int n, m, s, e, d, total;
int c[MAXN][MAXN];
int dir[4][2] = {0, -1, -1, 0, 0, 1, 1, 0};
int ans[MAXN * MAXN];
bool ok;

int change(char ch)
{
    switch(ch)
    {
        case 'L': return 0;
        case 'U': return 1;
        case 'R': return 2;
        case 'D': return 3;
    }
}

char changetwo(int x)
{
    switch(x)
    {
        case 0: return 'L';
        case 1: return 'U';
        case 2: return 'R';
        case 3: return 'D';
    }
}

void dfs(int x, int y, int len, int di)
{
    if (len == total)
    {
        ok = true;
        return ;
    }

    if (ok)
    {
        return ;
    }

    for (int i = 3; i < 6; i++)
    {
        for (int k = 1; k <= 10; k++)
        {
            int xt = x + dir[(i + di) % 4][0] * k, yt = y + dir[(i + di) % 4][1] * k;

            if (xt >= 0 && xt < n && yt >= 0 && yt < m && !ok) //注意
            {
                if (c[xt][yt] == 1)
                {
                    ans[len] = (i + di) % 4;
                    len++;
                    c[xt][yt] = 0;
                    dfs(xt, yt, len, (i + di) % 4);

                    len--;
                    c[xt][yt] = 1;
                    break;
                }
            }
        }
    }
}

void solve()
{
    dfs(s, e, 0, d);

    for (int i = 0; i < total; i++)
    {
        cout << changetwo(ans[i]);
    }
    cout << endl;
}

void input()
{
    char ch;

    while (cin >> n >> m)
    {
        total = 0;
        ok = false;
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < m; j++)
            {
                cin >> ch;
                if (ch == '.')
                {
                    c[i][j] = 0;
                }
                else if (ch == 'o')
                {
                    total++;
                    c[i][j] = 1;
                }
                else
                {
                    d = change(ch);
                    s = i, e = j;
                    c[i][j] = 0;
                }
            }
        }

        solve();
    }
}

int main()
{
    std::ios::sync_with_stdio(false);
    input();
    return 0;
}


内容概要:本文详细介绍了QY20B型汽车起重机液压系统的设计过程,涵盖其背景、发展史、主要运动机构及其液压回路设计。文章首先概述了汽车起重机的分类和发展历程,强调了液压技术在现代起重机中的重要性。接着,文章深入分析了QY20B型汽车起重机的五大主要运动机构(支腿、回转、伸缩、变幅、起升)的工作原理及相应的液压回路设计。每个回路的设计均考虑了性能要求、功能实现及工作原理,确保系统稳定可靠。此外,文章还详细计算了支腿油缸的受力、液压元件的选择及液压系统的性能验算,确保设计的可行性和安全性。 适合人群:从事工程机械设计、液压系统设计及相关领域的工程师和技术人员,以及对起重机技术感兴趣的高等院校学生和研究人员。 使用场景及目标:①为从事汽车起重机液压系统设计的工程师提供详细的参考案例;②帮助技术人员理解和掌握液压系统设计的关键技术和计算方法;③为高等院校学生提供学习和研究起重机液压系统设计的实用资料。 其他说明:本文不仅提供了详细的液压系统设计过程,还结合了实际工程应用,确保设计的实用性和可靠性。文中引用了大量参考文献,确保设计依据的科学性和权威性。阅读本文有助于读者深入了解汽车起重机液压系统的设计原理和实现方法,为实际工程应用提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值