1.上高中的小明暗恋女神三年,高考结束后,小明决定向女神表白。这天,小明来到女神楼下等待女神的出现,时间一分一秒的流逝,两个多小时过去了,女神还没有出现,小明看了下表,时针和分针的位置正好跟开始等的时候互换,请问小明一共等了女神多少分钟()
A. 172
B. 166
C. 165
D. 150
答案:B
根据题意‘两个多小时’,说明时针在分针之后。
1. 设时针与分针的夹角为θ(θ < 180)
2. 时针走过的角度为θ,分针走过的角度为2π*n- θ
3. 则可以得到等式θ/(2π)*12*60 = (2π*n- θ)/(2π)*60
4. 题意‘两个多小时’,对n取3,解出θ=6π/13
5. 最后带入θ /(2 π) *12*60=(6 π/13)/(2 π) *12*60=166.1
6. 所以选B
2.有A,B,C三个学生,一个出生在北京,一个出生在上海,一个出生在广州。他们中一个学物理专业,一个学数学专业,一个学计算机。其中(1)A不是学物理的,B不是学计算机的;(2)学物理的不出生在上海;(3)学计算机的出生在北京;(4)B不出生在广州。请根据上述条件,判断A的专业()。
A. 物理
B. 数学
C. 计算机
D. 3种专业都可能
答案:C
1. 计算机在北京,物理在广州,数学在上海
2. B不出生在广州也不是学计算机的,所以是学数学的在上海
3. A不是学物理的,所以A是学计算机的
3.一个不透明的箱子里共有红,黄,蓝,绿,白五种颜色的小球,每种颜色的小球大小相同,质量相等,数量充足。每个人从篮子里抽出两个小球,请问至少需要多少个人抽球,才能保证有两个人抽到的小球颜色相同?
A. 6个
B. 11个
C. 13个
D. 16个
答案:D
选A和选D的应该对题意的理解不同
先列出15种情况
1.红红
2.黄黄
3.蓝蓝
4.绿绿
5.白白
6.红黄 (1和6都抽到了红色的,但是, 两个人抽到的小球颜色依然是不同的)
后面的情况与 6类似(都列出来吧,直观一点)
7.红蓝
8.红绿
9.红白
10.黄蓝
11.黄绿
12.黄白
13.蓝绿
14.蓝白
15.绿白
第 16种必然和前面出现过的15种中的一种相同
4.平面内有11个点,由它们连成48条不同的直线,由这些点可连成多少个三角形?
A. 158
B. 160
C. 162
D. 165
答案:B
平面内有11个点,如果没有多个点在一条线上,最多可以有C11 2=11*10/2=55
而目前只连成48条直线,说明有多个点在一条线上。55-48=7条
而三个点在一条直线上,减少C3 2 -1 = 2条线
四个点在一条线上,减少C4 2 -1 = 5条
五个点在一条线上,减少C5 2 -1 = 9条
所以所以有一组三个点共线有一组四个点共线
如果没有3个或3个以上的点在一条直线上,则可以连上C11 3=165
三个点共线会减少的三角数为C3 3 =1
四个点共线会减少的三角数为 C 4 3 = 4
所以 最终可连接的个数为 165 -1 - 5=160
5. 8,8,12,24,60()
A. 90
B. 120
C. 180
D. 240
答案:C
从左到右,后一个数是前一个数的1倍、1.5倍、2倍、2.5倍、3倍
6.假定x-65530,下面函数的返回值是多少?()
int func(x)
{
int countx = 0;
while (x)
{
countx++;
x = x & (x - 1);
}
return countx;
}
- 100
- 14
- 20
- 16
答案:B
函数的作用是统计x二进制数中1的个数。
65530的二进制是0000 0000 0000 0000 1111 1111 1111 1010,所以结果是14