
★求职2:大厂笔试面试总结

文章平均质量分 83
总结和整理了华为、阿里、百度、字节跳动、海康威视、京东、360、腾讯、拼多多、美团、大疆、仕兰微、网易等诸多知名公司笔试面试题总结整理
优惠券已抵扣
余额抵扣
还需支付
¥39.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
fpga和matlab
专业即算法,算法即数学,数学即万物。从事MATLAB算法仿真工作15年,从事FPGA系统开发工作12多年。擅长解决各种算法仿真、建模、通信、图像处理、AI、智能控制等各专业问题。
展开
-
大厂笔试面试总汇目录
目录1.华为2.阿里巴巴3.腾讯4.百度5.大疆6.字节跳动7.网易8.拼多多9.京东10.36011.小米12.今日头条13.美团14.海康威视15.士兰微16.寒武纪17.饿了吗18.牛客网19.商汤科技本专栏不定期更新整理各大公司的面试/笔试相关资料华为面试总结华为python机试题目:查找兄弟单词、称砝码、单词倒排、购物单、合并表记录华为python机试题目:计算字符个数、简单错误记录、简单密码、进制转换、句子逆序、密码验证合格程序华为面试应该怎么准备?华为python机试题目:明明的随机数、汽水瓶原创 2022-10-05 21:17:59 · 2162 阅读 · 0 评论 -
商汤科技面试——深度学习
linux的常用操作:查看文件大小、删除文件、查看文件行数、假如文件中有很多文件,每个文件中又有很多文件,如何删除全部文件。提出一个解决方法,然后挑战我,我又提出另一个解决方法,继续挑战我…循环,大佬总能提出方法中的漏洞,哭,自闭了。说一下使用Pytorch对cifar10数据集分类的整个代码流程,构建模型的过程是怎么样的。假如一个图片中有一个很大的目标还有一个很小的目标,你会怎么处理呢。查了一下,大佬是DeepID-Net的作者之一,膜~感觉是来打击我的,打破我原有的认知(觉得自己好菜啊)原创 2022-10-27 19:31:35 · 902 阅读 · 0 评论 -
今日头条面试——测试工程师
电话面试,在牛客网上,第一个问题是LCS问题,很简单但是紧张的要死写了将近半个小时,从N2的解法到cursor跳跃优化,最后没写DP的解法,面试官追问怎么写测试样例,举了10余个之后面试官不耐烦了说下一题。设计一个学校选课系统,然后开始各种加需求(要求课程有不同教学班和老师,要求能查询任意一天课程情况,要求查询学生平均分等等),各种被怼... 结束。假如说方方面面都算上,你觉得你在班级里排名能多少,为什么,比你高的那些人那些地方比你好?三天后出结果,过了,但是要加面一次交叉面,被调岗到测试开发。原创 2022-10-27 19:29:20 · 749 阅读 · 0 评论 -
腾讯面试——自然语言处理
二面面试官给人的感觉很舒服,因为他很爱笑,我也是全程微笑着讲着我的工作。”我举了个例子,换着不同的方式讲了3遍,最后皆大欢喜,哈哈,他终于搞懂了。hr先diss了我的本科学校(因为本科是财经政法类学校),问我财经类学校师资水平和教学资源会不会影响我学习,我解释了一下。然后结束了,对了,最后她给我说最近几天会给我发正式offer,让我保持手机畅通。我一听,哈哈,稳了!最后他问我有没有什么问题问他,我就问到了主要做什么工作,然后把自己的一些想法给他说了。他还夸我有想法,夸的我都不好意思,然后就愉快的结束了。原创 2022-10-27 19:24:49 · 650 阅读 · 0 评论 -
阿里巴巴面试——自然语言处理
(这个我说一下,我没找其他的实习,因为最近在准备EMNLP的论文,没时间找,我也很想进阿里,所以如果阿里没过的话,我就直接准备秋招不找实习了),HR小姐姐听了以后笑了,她说:你这是有很大的信心能过啊!这个电话打过来我是有一些准备的,就没一面那么慌张,刚开始的时候让我自我介绍(因为一面没有让介绍我以为不用自我介绍就没准备),突然让自我介绍,我就随便说了下自己本科是哪,研究生在哪,研究生的方向。不带姓的叫了我后两个字,就感觉很亲切,面试的过程很短,就聊了一些项目上的东西,他也不是很懂,总体聊的还是不错的。原创 2022-10-27 19:21:59 · 536 阅读 · 0 评论 -
拼多多面试——机器学习岗位面经
自我介绍科研项目介绍Kaggle 比赛介绍腾讯比赛介绍RNN用过吗 用过:项目 KaggleLR用过吗 用过:Kaggle的二分类检测XGB和LGB区别:只想到三点,特征排序,特征切分和直方图和全排序说他们共同点较多 小提一点,又小提了GBDT到XGB和LGB,然后扯了扯实际用这两个模型的感受,然后说只记得三点不同了,实际效果xgb不输LGB但是调参不好搞,而且LGB很快(1)更快的训练速度和更高的效率:LightGBM使用基于直方图的算法。原创 2022-10-26 05:40:47 · 839 阅读 · 0 评论 -
寒武纪面试——深度学习工程师
1、自我介绍2、Python和C++的区别(答了很多python的特性)3、Python为什么会慢?答:因为不知道数据类型,取数据要判断一下。(1、python是一个动态的解释型语言;python中的值不是存储在缓存区而是分散的存储在对象中。原创 2022-10-26 05:38:55 · 856 阅读 · 0 评论 -
旷视科技面试——深度学习面经
Xn相互独立,且都服从(0,θ)上的均匀分布。对实习的感受,氛围,有什么业界知名人士吗,发表论文什么的每年多少CVPR、ICCV、ECCV等。有一个数target,一个数组,数组中两个数的和是这个target,请找到这两个数。这句低层是怎么实现的,发生了什么。你用什么框架,各个框架的实现机制有什么不同。二维平面,一堆散点,找一个条拟合的直线。比赛负责哪些工作,第一名是谁,哪个任务。有哪些offer,给了多少钱,期望薪资。1000个视频,无标签,怎么分类预测。二维平面,一堆散点,找分布函数。原创 2022-10-26 05:35:19 · 1020 阅读 · 0 评论 -
京东面试——深度学习面经
我刚才问你的问题就是想知道你是否参加一些活动,你一直聊得都是学术上的我刚才问你的问题就是想知道你是否参加一些活动,你一直聊得都是学术上的。那你写了这么多博客,在写和参考别人的时,都会有意无意积累一些知识,怎么会不知道呢,那你博客都是原创的吗?你在xx实习过,都做过什么工作,老师让出去实习吗?我不是问你性格,我是问你因为你的优势获得哪些成就。我不是问你怎么复习的,我是问你做了哪些努力?那你觉得你本科学校和研究生学校有什么不同?你这个xx项目是怎么实现的,有什么功能?你说阅读最新论文,你都读过什么论文?原创 2022-10-26 05:32:49 · 813 阅读 · 0 评论 -
360科技面试——网络安全算法
自我介绍线程和进程 区别那进程间可以通信啊,什么方式线程可以通信吗?线程有哪些状态你了解多线程、多进程吗?有写过吗python中怎么实现多线程、多进程的?python中的多线程是真的多线程吗?指针和引用的区别TCP和UDP的区别内存中堆和栈的区别C++中多态了解吗?项目你数据结构怎么样了解哪些数据结构那链表你知道??手写代码:反转链表、快排。原创 2022-10-26 05:31:21 · 612 阅读 · 0 评论 -
商汤科技面试——CV算法面经
1. CornerNet介绍,CornerPooling是怎么做的,怎么解决cornernet检测物体合并为一个框的问题。1. 在人脸关键点和检测中的mimic是怎么做的?3. 你认为目前video和知识蒸馏这两个方向的挑战和可以改进的地方在哪。2. MxN的方格中有多少个正方形、多少个矩形、有多少种不同面积矩形。主要与大boss聊自己的未来规划、对某个大方向做一些自己的分析。主要介绍了公司的一些情况、福利,询问手中的offer情况,聊天。2. 项目中你用做过SDK和安卓开发,是在这个项目中学的吗?原创 2022-10-26 05:28:09 · 1381 阅读 · 0 评论 -
字节跳动—— 机器学习面试岗位
一面1.自我介绍,项目介绍2.lightgbm GBDT xgb,问的超级细,可能持续了7 8分钟,XGB残差怎么用一次和二次梯度求,分裂点怎么求,思想原理是什么。XGB实际使用中重要的超参数,你们比赛中用的目标函数是什么,为什么lightgbm速度更快,其并行计算如何实现(这点没回答上)3.bagging boosting 的区别,谁是更关注方差 ,谁是更关注偏差4.如何防止过拟合,项目中用过哪些手段。原创 2022-10-24 23:43:20 · 1416 阅读 · 0 评论 -
网易面试——人工智能工程师
面试技巧方面,最重要的就是主动把自己知道的都说出来(当然要有条理有逻辑),不能面试官问什么说什么,尤其问到不太会的问题,更得从不太会的问题中,尽可能展示出聊出自己会的东西(比如问我xgboost我就不太会,于是就从boost的基本思路开始说,并简单说了adaboost和gdbt)。总的来说,我做了两篇论文,所以面试会有很多时间花在聊论文上,而别的东西问的很简单,并且我编程题经常出状况的情况下,也都给过了。特征选择的方法,我说我是直接用树模型,树模型本身可以特征选择,还可以L1,降维,别的不了解。原创 2022-10-24 23:41:35 · 726 阅读 · 0 评论 -
阿里面试——机器学习/算法面试经验案例集合
聊论文,跟腾讯提前批电面过程差不多,主要是我在说,没深入太多问题。我主要针对序列数据建模,问了我Markov和RNN的区别。编程题:很简单的题目,字符串出现第k多的字符,leetcode上原题,写的挺快,问我复杂度就简单分析了一下。感觉阿里一面面试官比我还谨慎是为啥,感觉没聊多少就结束了。二面紧接着第二天就来了。原创 2022-10-24 23:34:57 · 558 阅读 · 0 评论 -
腾讯面试——机器学习/算法面试案例集
我是想答分治、分层索引之类的,但是面试官实际是在问,怎么设计数据结构能最快,怎么把x,y这样的坐标对存成key,没答上让他满意的答案。LR和boost的区别,这次吸取前面的教训,先是细说了LR是什么,怎么推导来的,然后说Boost是什么,干什么用,以Adaboost和GDBT简单举例,最后说二者联系和区别。问了一下我对深度学习的了解程度,然后手写BP算法,要我用伪代码写,我就连说带写了一个非常伪的伪代码。提到面试官对我的评价,并聊了之前提前批电面挂了的情况,问我怎么看,以及怎么评价刚刚的面试官。原创 2022-10-24 22:56:21 · 568 阅读 · 0 评论 -
爱奇艺面试——深度学习算法岗面试
一面面试官是一位小哥哥,人非常好,上来首先介绍了他们是做啥的,主要是做异常检测的,包括数据安全,网络安全等等,主要用的是统计机器学习偏多,也会用到深度学习,结合着具体的业务来看。聊到了职业规划,对爱奇艺的了解,业务安全、数据安全和网络安全,说到了B站源代码泄露,Facebook信息泄露这些等等。1. 讲一下你在平安做的这个项目吧(从数据来源到网络选择到网络改进再到最终结果说一遍),说完了之后,问如果让你继续跟进,你应该怎么来进行改进?然后面试官就说他这边没啥问题了,让我问他问题,随便问了两个问题。原创 2022-10-23 18:01:38 · 668 阅读 · 0 评论 -
腾讯面试——机器学习面试全流程案例
python sort函数内部实现原理 - 焦***的随笔*** - 博客园 https://www.cnblogs.com/clement-jiao/p/9243066.html。理论上来讲,Leaky ReLU有ReLU的所有优点,外加不会有Dead ReLU问题,但是在实际操作当中,并没有完全证明Leaky ReLU总是好于ReLU。什么叫做基于残差的训练?对这个数据集如何评价的,介绍二次加权Kappa,但是我貌似没介绍二次加权的意思。(NLP这个真不熟,门结构都说错了,是输入门,记忆门,输出门。原创 2022-10-23 17:59:06 · 1098 阅读 · 0 评论 -
阿里面试——机器学习案例
AB其他行为都相似,问还是用相似度?用机器学习角度考虑?给人群push ,对于点击行为放大,找到更多类似的人?问热播的坑位,限制曝光次数,两部电视剧,想让总点击量最大,怎么办?问解决机器学习的步骤?可以,我就从MR的运行讲了,重点不对,人家问的是M R 分别做的LR的哪部分?SVM对偶问题介绍一下 从函数间隔 几何间隔开始介绍的 (还是有点墨迹了)M实现数据预处理,R分类?问要是找不到这么多偏好的人呢?感觉自己说的太磨叽了,那边一直嗯嗯嗯,感觉我有点唠叨?如何用Spark实现LR?PageRank有了解?原创 2022-10-23 17:56:55 · 494 阅读 · 0 评论 -
阿里达摩院——cv算法面经
训练普通的模型使其收敛,打印反向传播梯度的大小,这表示该task的难度,以此作为loss的权重,然后我补充说了下可以搞一个动态的loss权重,根据一段时间窗口来决定loss的权重。算法上工程上的优化,面试前专门看了,总结的不错,知乎,更多细节可以看看陈天奇的论文,我没看过[捂脸],做机器学习的小伙伴最好看看。提了点细节和我踩的坑,需要数量级上的调整,不然深层的feature可能会被压制。大佬应该是搞backbone模型优化的,问了我怎么迭代基础网络的版本的,日常扯论文,自己的实验结果和理解。原创 2022-10-21 01:09:21 · 726 阅读 · 0 评论 -
阿里面试——机器学习岗四个面试案例
自我介绍,还是讲的太快TT我呼吸声音太大了CTR 人群提升是否感兴趣?问解决机器学习的步骤?数据清洗-数据变换-训练模型-评估模型(过拟合欠拟合,PR ROC……)感觉自己说的太磨叽了,那边一直嗯嗯嗯,感觉我有点唠叨?特征变换做什么?特征处理?讲了PCA假设只是做特征工程呢?比如归一化?讲了归一化 标准化有哪些算法需要归一化?树形不需要为啥?树形对具体值不敏感?监督学习 GBDT讲了GBDT与XGBoost区别那为什么XGBoost泰勒展开?不知道。原创 2022-10-21 00:29:14 · 700 阅读 · 0 评论 -
阿里云——算法面经
我说,周三下午或者晚上吧,周一周二也行,看您时间,他说,我是说。那个,我现在在床上,我爬下去准备准备,他说行,你爬吧,我说,那个,要不您过5分钟打过来(其实我想去上个厕所==、)他说,那行,我过5分钟打过来~你那个GAN的项目讲讲,我就讲啊讲,涉及到一篇论文,他说,哎你那篇论文损失函数,是不是还没说全啊,我说对对,你怎么知道,他说,啊,我最近也在研究。我说,我以为您不懂,有的细节就没说,他说,没事你说吧,你把细节都说出来,我也学习学习(不敢当不敢当。我还学过C++、java、学的不够精,没写上去(回想。原创 2022-10-21 00:04:26 · 579 阅读 · 0 评论 -
阿里达摩院——算法面经
自我介绍:项目主要是商汤无人车实习的项目,问我比baseline提升15个点,怎么来的。从数据迭代、backbone、模型修改几个层面上说了下。挑一两个有意思的优化说说,说了cascade、hdcnn的结构,为什么用这种结构。项目中出现什么情况,怎么解决的?主要就是说小目标检测的解决方案。对caffe源码熟悉程度。(我扯了扯源码的底层设计模式,数据流怎么流的,如何添加新层、cuda代码的细节)开放题给了一个情景,如何训练模型、调优。原创 2022-10-20 23:51:42 · 611 阅读 · 0 评论 -
腾讯面试——机器学习岗面试总结
先写合并两个有序数组,接着写合并n个有序的数组,假设总共m个数,讲了一个思路两两合并直到只剩下一个数组,分析一下时间复杂度(MlogN),面试官不满意,然后想了一下说了另一个思路,用n个指针开始指向各个数组的首端,用一个优先队列维护他们的最小值,每次拿出最小值的指针然后插入该指针的下一个值。感觉跟二面面试官聊得还是挺开心的,他详细地介绍了他们部门所做的业务,然后问了一下什么时候能来实现,我说只能暑假七八两个月,他觉得有点晚,这样子不利于转正,有些人都实习半年的,回去讨论一下,正式批之前给我答复。原创 2022-10-19 03:13:51 · 979 阅读 · 0 评论 -
阿里巴巴——机器学习面试总结
又问了一下具体的业务,然后这个面试官很nice,很详细地介绍了他们部门主要研究的几个方向以及正在做的业务(起码介绍了4分钟),惯例地又问了总共几面,他说还有一两轮技术面,加上HR面还有两到三轮面试,吐槽一下好多面,然后面试官人很好地解释:阿里实习生基本按照正式员工标准去招人,转正率很高,他们是严进严出,而腾讯一般三轮面试,宽进宽出招几千人但是转正率不高。又是等了四五天,4月2号吃完午饭后接到了四面电话,然后面试官给我10分钟找个安静的环境他再打过来,匆匆忙忙跑到一个实验楼背面,等待着最后一轮技术面。原创 2022-10-19 03:12:29 · 770 阅读 · 0 评论 -
字节跳动面试——图形图像算法实习
主要涉及的问题有项目、C++、图形学和编程题,大概还记得下面这些。原创 2022-10-17 00:24:04 · 868 阅读 · 0 评论 -
字节跳动面试——算法岗
A:(哇,这个我见过,内心美滋滋)我们应该把M个链表的头节点做成一个大小为M的最大堆,每次取出堆中最大的节点,然后将这个节点的后序节点放进来,重新对堆进行排序。感想的话就是面试官会根据你的项目一点点来问你,问你一个问题的时候,这个时候尽可能不要挤牙膏:问一句,回答一句,要根据这个问题发散的回答,把节奏掌握再自己手里。我说了自己最近写的一个深度神经网络的框架和一个刚刚做不久的小车AI的项目。Q:好的,下面我们来一个开放式的问题:现在有一组数,其中有m对数是两两有序的,请你设计一种算法来对这一组数排序。原创 2022-10-17 00:21:13 · 758 阅读 · 0 评论 -
寒武纪面试——深度学习/算法面试岗
6.那讲讲卷积神经网络,用过哪些,每一层怎么设计(VGG,renet等等)然后讲了一下,我论文里的网络设计,VGG16+FPN+elewise(sum和prod)等等,感觉他兴趣也一般。完事后,hr小姐姐给我详细的介绍了一下寒武纪,还跟我讲了一下,为啥今年大家拿offer都拿的迟,面试官人也不错,挺和蔼的,不怼我,hr小姐姐超级高,比我还高,虽然我只有175。用atomic,前两天才被360问到,我才答的,居然记错了,记成violiate了,难受。讲解一下虚函数的原理,析构函数可以写成虚函数吗?原创 2022-10-17 00:06:23 · 955 阅读 · 0 评论 -
拼多多面试——算法实习面试
5.rcnn到faster rcnn,介绍一下,然后具体每一步操作都问的很细,roi pooling具体怎么做的、RPN是怎么做的,输入输出是什么。2.面试官不是做图像的,问了每一个项目是怎么做的,思想,没有问细节;8.nms具体怎么做的,假设这是一个函数,那么这个函数输入输出是什么,中间操作又是怎么做的。2.面试官是图像组的,介绍项目,抠细节,为什么这样做,所以用了什么一定要很详细的知道。3.中间问了项目具体做什么的,怎么做的,貌似测谎。3.resnet结构是怎么样的,有什么优点。原创 2022-10-14 21:52:15 · 1235 阅读 · 0 评论 -
商汤科技——机器视觉面试
3.问了focal loss是如何进行难分样本挖掘的(公式我有点忘了,就说了大概,主要思想是说出来了,因为是取幂,对于简分样本损失会比较小,取幂后会更小,反传时更新梯度会很小很小,基本可以忽略,但对于难分,取幂后还是很大)嗯,码了这么多字,还是在线祈愿一波,希望自己的面试都能通过(明天还有海康的面试,也一起祈福了),(++offer)++!总体感受是面试官很专业,问的问题都是需要自己在做项目的时候有所思考的,能真正体现出是不是深入研究了自己的项目。2.也是深挖简历上的实习和项目(还是得结合自己的简历)原创 2022-10-14 21:17:17 · 1851 阅读 · 0 评论 -
美团面试——机器学习岗
1.介绍研究方向2.二叉树的中序非递归遍历3.介绍shufflenet,resnet等4.介绍神经网络参数初始化的方法。原创 2022-10-14 21:14:34 · 825 阅读 · 0 评论 -
阿里面试——机器学习面试总结
项目主要是商汤无人车实习的项目,问我比baseline提升15个点,怎么来的。从数据迭代、backbone、模型修改几个层面上说了下。挑一两个有意思的优化说说,说了cascade、hdcnn的结构,为什么用这种结构。项目中出现什么情况,怎么解决的?主要就是说小目标检测的解决方案。对caffe源码熟悉程度。(我扯了扯源码的底层设计模式,数据流怎么流的,如何添加新层、cuda代码的细节)开放题给了一个情景,如何训练模型、调优。(题目很空,主要考察你对深度学习的理解)原创 2022-10-13 22:22:09 · 545 阅读 · 0 评论 -
腾讯面试——算法实习面试总结
介绍简历上的工作,详细讲了一作的论文,非一作的直接跳过介绍简历上的项目,说到CRF as RNN模型的时候,面试官问你们的训练数据量远少于语义分割,具体是如何训练以及对抗过拟合的,是否有用到pretrained model大部分做主流CV任务的网络参数量都太大了,不适合直接迁移将VGG换成了UNet => 追问,为什么换常规的数据增强 => 有哪几种Adversarial training => 追问了具体实现方法 => 参考了ICLR 2018 Sinha et al的工作。原创 2022-10-13 22:19:09 · 551 阅读 · 0 评论 -
旷世科技面试——CV岗/后端开发
1.自我介绍,项目介绍2.FCN结构介绍,上采样的具体操作3.空洞卷积原理,deeplab v1 v2的改进4.focal loss介绍, lovasz loss数学原理(这个项目里面用了但没回答上)5.一道题,计算卷积操作的浮点计算量,比较简单6.介绍下RPN的原理8.unet的缺点,最新的改进版本有没有看过(这个没回答上,很伤,之前还有人提醒过我) 附上unet++ 论文连接 https://arxiv.org/pdf/1807.10165v1.pdf。原创 2022-10-11 22:39:16 · 871 阅读 · 0 评论 -
旷视科技面试——算法岗
1、自我介绍2、实习:说一下deeplab。它与其他state of art的模型对比3、实习:CRF后处理的目的4、什么是BN5、多标签分类怎么解决,从损失函数角度考虑6、image caption项目:文本特征用什么提的?提前提好的还是和图像一起训?7、零样本分类问题。如果测试时出现一个图片是训练时没有的类别,怎么做8、代码:链表反转。原创 2022-10-11 22:14:18 · 1358 阅读 · 0 评论 -
紫光展锐面试——测试岗位案例总结
3.测试报告有了解吗,测试计划了解吗,测试工具用过吗(全都不会,面试官真的不错,给我介绍了一些常用的测试软件,说要好好准备,多多学习)5.drop和delete的区别,还问了一句两个都能重设数据吗(不知道问的是不是重设,面试官有方言,我实在没听懂什么意思)7.英语怎么样,来个英语自我介绍(不知道是不是我不懂的太多了,是不是临时加的一个,就随便说了三句话)4.数据库了解吗,给了一道内连接的题,给a,b两个表,有id,问怎么实现内连接(还好这个会)2.说说对测试开发岗这个岗位的了解,你觉得这个岗位是做什么的。原创 2022-10-07 20:20:19 · 1297 阅读 · 0 评论 -
紫光展锐面试——软件岗
1、自我介绍2、问项目、方向3、static关键字4、volatile关键字5、final关键字6、synchronized关键字7、进程和线程的区别8、进程通信方式的区别(共享内存、消息队列优缺点)9、线程通信方式10、接口和抽象类的区别11、设计模式熟悉吗?说完之后讲下单例模式?12、拿过什么奖吗13、发过论文和专利吗14、能来天津吗?想以后工作在哪个城市反问面试官很友好,一直在笑。原创 2022-10-07 20:16:21 · 1252 阅读 · 0 评论 -
紫光展锐面试——FPGA/IC设计面试面经案例总结
自我介绍;研究生的主要研究方向是什么?为什么想要应聘数字芯片相关的工作?简单介绍下数字IC设计流程。逻辑综合主要做什么?你有实际做过逻辑综合工作吗?你了解SS corner和FF corner吗?综合时应该使用哪个corner?综合时需要考虑hold吗?为什么?提高时钟频率对setup和hold有什么影响?为什么?hvt、rvt/svt、lvt有什么区别?c40、c50是指什么概念?有什么区别?你对EDA工具有过了解吗?原创 2022-10-07 20:11:11 · 1209 阅读 · 0 评论 -
芯动科技面试——数字IC/FPGA面试案例总结1
(我回答:高阻poly,因为Hpoly电阻是负温度系数,可以得到(一阶补偿)较低的温度系数,可以计算出理论上用Hpoly电阻(XB06process)可以得到10ppm左右的温度系数(-20至85度)。从3M到20M跨时钟域,不用握手不用异步fifo,传递8bit数据(3M的时钟是每个时钟变化一次数据),问应该怎么做?3、问题3:从A时钟域跨到B时钟域,用通常的打两拍来做同步,这两个时钟域的时钟周期要满足什么条件?6 、问了我对PCIE的了解,我说我对PCIE属于了解状态,读了一本PCIE体系架构。原创 2022-10-06 21:08:01 · 2181 阅读 · 0 评论 -
平头哥面试——芯片工程师面经
有5个成递增关系的32bit地址值,彼此之间的间隔大小不确定,可以把他们当成parameter来输入模块,现有一个32bit输入数据,要求用尽量少资源去的判断这个数处于哪2个地址之间(地址区间),并且输出区间号。a)后续大概会在9月下旬谈具体的薪资,他们现在也没想好今年应届生的薪资该给多少,到时候如果可以签三方的话可能会跳过意向书环节直接发offer,谈薪资肯定是通过电话来。b. 这边的CPU是自己研制的(玄铁),成都这边主要做存储和网络,都有SOC。a. 成都这边的网络部门具体做的业务有哪些?原创 2022-10-06 20:50:56 · 1939 阅读 · 0 评论 -
平头哥面试——数字IC面试流程整理
5.说一个你最大的缺点(这个问题追问好久,而且必须是很大的缺点,不然hr会说这个问题不痛不痒的,让你接着提)2.项目(大部分时间) (实习算法怎么实现的,能跑到多少M,时序怎么分析的,整体的框架,写了多少代码)5. AHB总线APB总线的区别,AHB总线控制信号怎么工作,自己有没有写过AHB APB总线的代码、4. FIFO深度计算,不同读写频率,读写频率相同, FIFO深度怎么计算←。平头哥更趋向于录取实习的同学,可以互相更加深入了解。1.家乡是哪的,想去哪里工作(这点很重要)3.阻塞赋值与非阻塞赋值。原创 2022-10-06 20:22:01 · 1883 阅读 · 0 评论