高数中的高斯公式

根据《高等数学》第七版同济大学下册书中第十一章,曲线积分与曲面积分第六节高斯公式,通量与散度中的定义:
设空间闭区域 Ω \Omega Ω是由分片光滑的闭曲面 ∑ \sum 所围成,若函数 P ( x , y , z ) P\left(x, y, z\right) P(x,y,z) Q ( x , y , z ) Q\left(x, y, z\right) Q(x,y,z) R ( x , y , z ) R\left(x, y, z\right) R(x,y,z) Ω \Omega Ω上具有一阶连续偏导数,则有
∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) = ∮ ∑ P d y d z + Q d x d z + R d x d y (1) \iiint_{\Omega}\left(\frac{\partial{P}}{\partial{x}}+\frac{\partial{Q}}{\partial{y}}+\frac{\partial{R}}{\partial{z}}\right) = \oint_{\sum}P\mathrm{d}y\mathrm{d}z + Q\mathrm{d}x\mathrm{d}z + R\mathrm{d}x\mathrm{d}y \tag{1} Ω(xP+yQ+zR)=Pdydz+Qdxdz+Rdxdy(1)
该公式的数学证明过程很复杂,这里不做过多说明,而且这个公式看起来也十分复杂,如何去形象的理解它就成了比较重要的事情。我们可以看到这个公式的左侧是一个体积积分,右侧是一个面积积分,也就是说,高斯公式实际上是将体积积分与面积积分联系起来的一个公式。下面我们来赋予式中各项相应的物理意义。尝试从流体力学的角度来理解这一公式。
我们假设曲面 ∑ \sum 包裹着一部分流体。
P P P:沿着yz平面的闭曲面内的包裹流体的流速。
Q Q Q:沿着xz平面的闭曲面内的包裹流体的流速。
R R R:沿着xy平面的闭曲面内的包裹流体的流速。
如果考虑上单位时间,那么等式 ( 1 ) \left(1\right) (1)的右侧我们可以理解为,是闭曲面 ∑ \sum 所围成的整个立体封闭式体积空间内向外的流量。
进一步我们讨论等式的左侧,我们可以看到,等式的左侧表达式中的积分核可以写为:
∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) ⋅ ( P , Q , R ) = ∇ ( P , Q , R ) \frac{\partial{P}}{\partial{x}}+\frac{\partial{Q}}{\partial{y}}+\frac{\partial{R}}{\partial{z}}=\left(\frac{\partial{}}{\partial{x}},\frac{\partial{}}{\partial{y}}, \frac{\partial{}}{\partial{z}}\right)\cdot\left(P, Q,R\right)=\nabla \left(P, Q,R\right) xP+yQ+zR=(x,y,z)(P,Q,R)=(P,Q,R)
我们可以看到,左侧的积分核部分实际上是一个关于 ( P , Q , R ) \left(P, Q,R\right) (P,Q,R)的散度运算。根据散度表示的意义:对一个无限小的微团,内部通过微团的边界向外界释放、流出的流量

如果我们想象此时曲面 ∑ \sum 围成的立体空间是一个水池,那么该高斯公式表示的是—通过进水口流进水池的水,等于通过水池边界漏出去的水。

如果大家觉得有用,就请点个赞吧~

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的大熊猫

你的鼓励将是我写作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值