调用方法:
numpy.zeros(shape, dtype=float)
各个参数意义:
shape
:创建的新数组的形状(维度)。
dtype
:创建新数组的数据类型。
返回值:给定维度的全零数组。
基础用法
import numpy as np
array = np.zeros([2, 3])
print(array)
print(array.dtype)
"""
result:
[[0. 0. 0.]
[0. 0. 0.]]
float64
"""
可以看到我们成功创建了一个2
行3
列的全零二维数组。并且创建的数组中的数据类型是np.float64
类型。
进阶用法:
import numpy as np
array = np.zeros([2, 3], dtype=np.int32)
print(array)
print(array.dtype)
"""
result:
[[0 0 0]
[0 0 0]]
int32
"""
可以看到,这里我们同样成功创建了一个2
行3
列的全零二维数组。并且我们指定了其数据类型为np.int32
。
最高级用法
import numpy as np
# Create rain data
n_drops = 10
rain_drops = np.zeros(n_drops, dtype=[('position', float, (2,)),
('size', float),
('growth', float),
('color', float, (4,))])
# Initialize the raindrops in random positions and with
# random growth rates.
rain_drops['position'] = np.random.uniform(0, 1, (n_drops, 2))
rain_drops['growth'] = np.random.uniform(50, 200, n_drops)
print(rain_drops)
"""
result:
[([0.70284885, 0.03590322], 0., 176.4511602 , [0., 0., 0., 0.])
([0.60838294, 0.49185854], 0., 60.51037667, [0., 0., 0., 0.])
([0.86525398, 0.65607663], 0., 168.00795695, [0., 0., 0., 0.])
([0.25812877, 0.14484747], 0., 80.17753717, [0., 0., 0., 0.])
([0.66021716, 0.90449213], 0., 121.94125106, [0., 0., 0., 0.])
([0.88306332, 0.51074725], 0., 92.4377108 , [0., 0., 0., 0.])
([0.68916433, 0.89543162], 0., 90.77596431, [0., 0., 0., 0.])
([0.7105655 , 0.68628326], 0., 144.88783652, [0., 0., 0., 0.])
([0.6894679 , 0.90203559], 0., 167.40736266, [0., 0., 0., 0.])
([0.92558218, 0.34232054], 0., 93.48654986, [0., 0., 0., 0.])]
"""
高维度用法
事实上,np.zeros()
函数可以创建任意维度的数组,常见的有一维,二维,三维。这里我们以四维举例。
import numpy as np
coordinates = np.zeros((250, 4, 2, 2))
print(coordinates[0].shape)
"""
result:
(4, 2, 2)
"""
可以看到,这里我们创建的是一个四维全部元素均等于 0
的数组,相当于一个维度为 (4,2,2)
的三维数组重复出现了 250
次。
码字不易,如果大家觉得有用,请高抬贵手给一个赞让我上推荐让更多的人看到吧~