三角函数---诱导公式
不知道大家有没有过和我相同的经历,每次用到诱导公式时上网查询,每次都会遇到很多错误的解答。这篇文章将对诱导公式进行推导,并且将常见的诱导公式结果作为一个表格供大家查询。
首先先上结论:
结果
函数类别 | 诱导公式 | 结果 |
---|---|---|
sin \sin sin | sin ( π 2 − θ ) \sin\left(\cfrac{\pi}{2} - \theta\right) sin(2π−θ) | cos θ \cos\theta cosθ |
sin \sin sin | sin ( π 2 + θ ) \sin\left(\cfrac{\pi}{2} + \theta\right) sin(2π+θ) | cos θ \cos\theta cosθ |
cos \cos cos | cos ( π 2 − θ ) \cos\left(\cfrac{\pi}{2}- \theta\right) cos(2π−θ) | sin θ \sin\theta sinθ |
cos \cos cos | sin ( π 2 + θ ) \sin\left(\cfrac{\pi}{2} + \theta\right) sin(2π+θ) | − sin θ -\sin\theta −sinθ |
推导
sin ( π 2 − θ ) \sin\left(\frac{\pi}{2} - \theta\right) sin(2π−θ)
sin ( π 2 − θ ) = sin π 2 cos θ − cos π 2 sin θ = cos θ − 0 = cos θ \sin\left(\frac{\pi}{2} - \theta\right)=\sin\frac{\pi}{2}\cos\theta - \cos\frac{\pi}{2}\sin\theta=\cos\theta - 0 = \cos\theta sin(2π−θ)=sin2πcosθ−cos2πsinθ=cosθ−0=cosθ
sin ( π 2 + θ ) \sin\left(\frac{\pi}{2} + \theta\right) sin(2π+θ)
sin ( π 2 + θ ) = sin π 2 cos θ + cos π 2 sin θ = cos θ + 0 = cos θ \sin\left(\frac{\pi}{2} + \theta\right)=\sin\frac{\pi}{2}\cos\theta + \cos\frac{\pi}{2}\sin\theta=\cos\theta + 0 = \cos\theta sin(2π+θ)=sin2πcosθ+cos2πsinθ=cosθ+0=cosθ
cos ( π 2 + θ ) \cos\left(\frac{\pi}{2} + \theta\right) cos(2π+θ)
cos ( π 2 − θ ) = cos π 2 cos θ + sin θ sin π 2 = 0 + sin θ = sin θ \cos\left(\frac{\pi}{2} - \theta\right)=\cos\frac{\pi}{2}\cos\theta + \sin\theta \sin\frac{\pi}{2}= 0 + \sin\theta = \sin\theta cos(2π−θ)=cos2πcosθ+sinθsin2π=0+sinθ=sinθ
cos ( π 2 + θ ) \cos\left(\frac{\pi}{2} + \theta\right) cos(2π+θ)
cos ( π 2 + θ ) = cos π 2 cos θ − sin θ sin π 2 = 0 − sin θ = − sin θ \cos\left(\frac{\pi}{2} + \theta\right)=\cos\frac{\pi}{2}\cos\theta - \sin\theta \sin\frac{\pi}{2}= 0 - \sin\theta = -\sin\theta cos(2π+θ)=cos2πcosθ−sinθsin2π=0−sinθ=−sinθ
后续有时间了会继续补充,欢迎收藏!
如果大家觉得有用,就请点个赞吧~