三角函数---诱导公式


不知道大家有没有过和我相同的经历,每次用到诱导公式时上网查询,每次都会遇到很多错误的解答。这篇文章将对诱导公式进行推导,并且将常见的诱导公式结果作为一个表格供大家查询。
首先先上结论:

结果

函数类别诱导公式结果
sin ⁡ \sin sin sin ⁡ ( π 2 − θ ) \sin\left(\cfrac{\pi}{2} - \theta\right) sin(2πθ) cos ⁡ θ \cos\theta cosθ
sin ⁡ \sin sin sin ⁡ ( π 2 + θ ) \sin\left(\cfrac{\pi}{2} + \theta\right) sin(2π+θ) cos ⁡ θ \cos\theta cosθ
cos ⁡ \cos cos cos ⁡ ( π 2 − θ ) \cos\left(\cfrac{\pi}{2}- \theta\right) cos(2πθ) sin ⁡ θ \sin\theta sinθ
cos ⁡ \cos cos sin ⁡ ( π 2 + θ ) \sin\left(\cfrac{\pi}{2} + \theta\right) sin(2π+θ) − sin ⁡ θ -\sin\theta sinθ

推导

sin ⁡ ( π 2 − θ ) \sin\left(\frac{\pi}{2} - \theta\right) sin(2πθ)

sin ⁡ ( π 2 − θ ) = sin ⁡ π 2 cos ⁡ θ − cos ⁡ π 2 sin ⁡ θ = cos ⁡ θ − 0 = cos ⁡ θ \sin\left(\frac{\pi}{2} - \theta\right)=\sin\frac{\pi}{2}\cos\theta - \cos\frac{\pi}{2}\sin\theta=\cos\theta - 0 = \cos\theta sin(2πθ)=sin2πcosθcos2πsinθ=cosθ0=cosθ

sin ⁡ ( π 2 + θ ) \sin\left(\frac{\pi}{2} + \theta\right) sin(2π+θ)

sin ⁡ ( π 2 + θ ) = sin ⁡ π 2 cos ⁡ θ + cos ⁡ π 2 sin ⁡ θ = cos ⁡ θ + 0 = cos ⁡ θ \sin\left(\frac{\pi}{2} + \theta\right)=\sin\frac{\pi}{2}\cos\theta + \cos\frac{\pi}{2}\sin\theta=\cos\theta + 0 = \cos\theta sin(2π+θ)=sin2πcosθ+cos2πsinθ=cosθ+0=cosθ

cos ⁡ ( π 2 + θ ) \cos\left(\frac{\pi}{2} + \theta\right) cos(2π+θ)

cos ⁡ ( π 2 − θ ) = cos ⁡ π 2 cos ⁡ θ + sin ⁡ θ sin ⁡ π 2 = 0 + sin ⁡ θ = sin ⁡ θ \cos\left(\frac{\pi}{2} - \theta\right)=\cos\frac{\pi}{2}\cos\theta + \sin\theta \sin\frac{\pi}{2}= 0 + \sin\theta = \sin\theta cos(2πθ)=cos2πcosθ+sinθsin2π=0+sinθ=sinθ

cos ⁡ ( π 2 + θ ) \cos\left(\frac{\pi}{2} + \theta\right) cos(2π+θ)

cos ⁡ ( π 2 + θ ) = cos ⁡ π 2 cos ⁡ θ − sin ⁡ θ sin ⁡ π 2 = 0 − sin ⁡ θ = − sin ⁡ θ \cos\left(\frac{\pi}{2} + \theta\right)=\cos\frac{\pi}{2}\cos\theta - \sin\theta \sin\frac{\pi}{2}= 0 - \sin\theta = -\sin\theta cos(2π+θ)=cos2πcosθsinθsin2π=0sinθ=sinθ

后续有时间了会继续补充,欢迎收藏!

如果大家觉得有用,就请点个赞吧~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的大熊猫

你的鼓励将是我写作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值