引言
这里记录一个初中问题,我印象中初三的时候我一口就能说出答案的式子,现在竟然突然想不通了,这里特来记录一下。
正文
如上图所示,如果我们已知两个点的坐标 A ( x 0 , y 0 ) A\left ( x_0, y_0 \right ) A(x0,y0) 和 B ( x 1 , y 1 ) B\left ( x_1, y_1 \right ) B(x1,y1)。现在有一个点 C ( x 3 , y 3 ) C\left ( x_3, y_3 \right ) C(x3,y3) 位于它们的连线上,如果我们知道点 A A A 距离点 C C C 的距离为 d 1 d_1 d1,点 B B B 距离点 C C C 的距离为 d 2 d_2 d2。过点 C C C 做 A D AD AD 边的垂线与 A D AD AD 相交于 E E E 点。那么如何求点 C C C 的坐标呢?
关于这个问题,有很多种解法,这里我们特来介绍一种比较特殊的表示方法,可以直接写出 C C C 点的坐标。
首先,我们可以很直观地表示出 C C C 点的坐标。
x 3 = x 0 + δ x y 3 = y 0 + δ y (1) \begin{align} x_3 &= x_0 + \delta x \nonumber \\ y_3 &= y_0 + \delta y \nonumber \end{align} \tag{1} x3y3=x0+δx=y0+δy(1)
根据相似三角形等比例定理,可得:
δ x A D = δ x x 1 − x 0 = d 1 d 1 + d 2 δ y B D = δ y y 1 − y 0 = d 1 d 1 + d 2 (2) \begin{align} \frac{\delta x}{AD} &= \frac{\delta x}{x_1-x_0}= \frac{d_1}{d_1+d_2} \nonumber \\ \frac{\delta y}{BD} &= \frac{\delta y}{y_1-y_0}=\frac{d_1}{d_1+d_2} \nonumber \end{align} \tag{2} ADδxBDδy=x1−x0δx=d1+d2d1