已知线段两个端点和端点距离线段上未知点的距离,求位于线段上该点的坐标(位于线段上点坐标的加权表达式)

已知线段两个端点和端点距离线段上未知点的距离,求位于线段上该点的坐标

引言

这里记录一个初中问题,我印象中初三的时候我一口就能说出答案的式子,现在竟然突然想不通了,这里特来记录一下。

正文

在这里插入图片描述
如上图所示,如果我们已知两个点的坐标 A ( x 0 , y 0 ) A\left ( x_0, y_0 \right ) A(x0,y0) B ( x 1 , y 1 ) B\left ( x_1, y_1 \right ) B(x1,y1)。现在有一个点 C ( x 3 , y 3 ) C\left ( x_3, y_3 \right ) C(x3,y3) 位于它们的连线上,如果我们知道点 A A A 距离点 C C C 的距离为 d 1 d_1 d1,点 B B B 距离点 C C C 的距离为 d 2 d_2 d2。过点 C C C A D AD AD 边的垂线与 A D AD AD 相交于 E E E 点。那么如何求点 C C C 的坐标呢?

关于这个问题,有很多种解法,这里我们特来介绍一种比较特殊的表示方法,可以直接写出 C C C 点的坐标。

首先,我们可以很直观地表示出 C C C 点的坐标。
x 3 = x 0 + δ x y 3 = y 0 + δ y (1) \begin{align} x_3 &= x_0 + \delta x \nonumber \\ y_3 &= y_0 + \delta y \nonumber \end{align} \tag{1} x3y3=x0+δx=y0+δy(1)
根据相似三角形等比例定理,可得:
δ x A D = δ x x 1 − x 0 = d 1 d 1 + d 2 δ y B D = δ y y 1 − y 0 = d 1 d 1 + d 2 (2) \begin{align} \frac{\delta x}{AD} &= \frac{\delta x}{x_1-x_0}= \frac{d_1}{d_1+d_2} \nonumber \\ \frac{\delta y}{BD} &= \frac{\delta y}{y_1-y_0}=\frac{d_1}{d_1+d_2} \nonumber \end{align} \tag{2} ADδxBDδy=x1x0δx=d1+d2d1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的大熊猫

你的鼓励将是我写作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值