已知线段两个端点和端点距离线段上未知点的距离,求位于线段上该点的坐标(位于线段上点坐标的加权表达式)

已知线段两个端点和端点距离线段上未知点的距离,求位于线段上该点的坐标

引言

这里记录一个初中问题,我印象中初三的时候我一口就能说出答案的式子,现在竟然突然想不通了,这里特来记录一下。

正文

在这里插入图片描述
如上图所示,如果我们已知两个点的坐标 A ( x 0 , y 0 ) A\left ( x_0, y_0 \right ) A(x0,y0) B ( x 1 , y 1 ) B\left ( x_1, y_1 \right ) B(x1,y1)。现在有一个点 C ( x 3 , y 3 ) C\left ( x_3, y_3 \right ) C(x3,y3) 位于它们的连线上,如果我们知道点 A A A 距离点 C C C 的距离为 d 1 d_1 d1,点 B B B 距离点 C C C 的距离为 d 2 d_2 d2。过点 C C C A D AD AD 边的垂线与 A D AD AD 相交于 E E E 点。那么如何求点 C C C 的坐标呢?

关于这个问题,有很多种解法,这里我们特来介绍一种比较特殊的表示方法,可以直接写出 C C C 点的坐标。

首先,我们可以很直观地表示出 C C C 点的坐标。
x 3 = x 0 + δ x y 3 = y 0 + δ y (1) \begin{align} x_3 &= x_0 + \delta x \nonumber \\ y_3 &= y_0 + \delta y \nonumber \end{align} \tag{1} x3y3=x0+δx=y0+δy(1)
根据相似三角形等比例定理,可得:
δ x A D = δ x x 1 − x 0 = d 1 d 1 + d 2 δ y B D = δ y y 1 − y 0 = d 1 d 1 + d 2 (2) \begin{align} \frac{\delta x}{AD} &= \frac{\delta x}{x_1-x_0}= \frac{d_1}{d_1+d_2} \nonumber \\ \frac{\delta y}{BD} &= \frac{\delta y}{y_1-y_0}=\frac{d_1}{d_1+d_2} \nonumber \end{align} \tag{2} ADδxBDδy=x1x0δx=d1+d2d1=y1y0δy=d1+d2d1(2)
将(2)式中的左侧分母均移动到等号右侧可得:
δ x = d 1 d 1 + d 2 ⋅ ( x 1 − x 0 ) δ y = d 1 d 1 + d 2 ⋅ ( y 1 − y 0 ) (3) \begin{align} \delta x &= \frac{d_1}{d_1+d_2} \cdot \left ( x_1-x_0 \right ) \nonumber \\ \delta y &= \frac{d_1}{d_1+d_2} \cdot \left ( y_1-y_0 \right ) \nonumber \end{align} \tag{3} δxδy=d1+d2d1(x1x0)=d1+d2d1(y1y0)(3)
将(3)式带入(1)式可得:
x 3 = x 0 + d 1 d 1 + d 2 ⋅ ( x 1 − x 0 ) y 3 = y 0 + d 1 d 1 + d 2 ⋅ ( y 1 − y 0 ) (4) \begin{align} x_3 &= x_0 + \frac{d_1}{d_1+d_2}\cdot \left ( x_1-x_0 \right ) \nonumber \\ y_3 &= y_0 + \frac{d_1}{d_1+d_2}\cdot \left ( y_1-y_0 \right ) \nonumber \end{align}\tag{4} x3y3=x0+d1+d2d1(x1x0)=y0+d1+d2d1(y1y0)(4)
此时,我们已经成功获得了点 C C C 的坐标,但是(4)式也很复杂,且不够直观。于是我们可以使用一个小技巧 对它的形式进行更改。
我们令:
x 0 = d 1 + d 2 d 1 + d 2 ⋅ x 0 y 0 = d 1 + d 2 d 1 + d 2 ⋅ y 0 (5) \begin{align} x_0 = \frac{d_1 + d_2}{d_1+d_2}\cdot x_0 \nonumber \\ y_0 = \frac{d_1 + d_2}{d_1+d_2}\cdot y_0 \nonumber \end{align}\tag{5} x0=d1+d2d1+d2x0y0=d1+d2d1+d2y0(5)
将(5)式带入(4)式可得:
x 3 = d 1 + d 2 d 1 + d 2 ⋅ x 0 + d 1 d 1 + d 2 ⋅ ( x 1 − x 0 ) = d 1 d 1 + d 2 ⋅ x 0 + d 2 d 1 + d 2 ⋅ x 0 + d 1 d 1 + d 2 x 1 − d 1 d 1 + d 2 x 0 = d 2 d 1 + d 2 ⋅ x 0 + d 1 d 1 + d 2 x 1 (6) \begin{align} x_3 &= \frac{d_1 + d_2}{d_1+d_2}\cdot x_0 + \frac{d_1}{d_1+d_2}\cdot \left ( x_1-x_0 \right ) \nonumber \\ &= \frac{d_1}{d_1+d_2}\cdot x_0 + \frac{d_2}{d_1+d_2}\cdot x_0 + \frac{d_1}{d_1+d_2} x_1-\frac{d_1}{d_1+d_2}x_0 \nonumber \\ &= \frac{d_2}{d_1+d_2}\cdot x_0 + \frac{d_1}{d_1+d_2} x_1 \nonumber \end{align}\tag{6} x3=d1+d2d1+d2x0+d1+d2d1(x1x0)=d1+d2d1x0+d1+d2d2x0+d1+d2d1x1d1+d2d1x0=d1+d2d2x0+d1+d2d1x1(6)
(6)式被叫做 两个角点的加权混合 的表达形式。同理,y 坐标的推导类似,这里就不再说明了。习惯这种表达方式后,可以直接写出点 C C C 的坐标。
我们可以简单地对(6)式进行一下验证,如果点 C C C 位于 A B AB AB 连线的中点。那么,点 C C C 的坐标为 ( x 0 + x 1 2 , y 0 + y 1 2 ) \left ( \frac{x_0 +x_1}{2}, \frac{y_0 +y_1}{2} \right ) (2x0+x1,2y0+y1)。此时对应 d 1 = d 2 d_1=d_2 d1=d2,将该关系带入(6)式可得:
x 3 = 1 2 x 0 + 1 2 x 1 = 1 2 ( x 0 + x 1 ) x_3 = \frac{1}{2}x_0 + \frac{1}{2}x_1=\frac{1}{2}\left ( x_0+x_1 \right ) x3=21x0+21x1=21(x0+x1)
同理,y 坐标类似。至此,(6)式得到验证。

我们知道,一个点的坐标是也可以看作是一个矢量,那么如果我们用矢量 p ⃗ \vec{p} p 表示 A A A 点的坐标,矢量 q ⃗ \vec{q} q 表示 B B B 点的坐标,且将 C C C 点的坐标矢量记为 p m ⃗ \vec{p_m} pm 。那么 C C C 点的坐标可以被表示为:
p m ⃗ = d 2 d 1 + d 2 ⋅ p ⃗ + d 1 d 1 + d 2 q ⃗ \vec{p_m} = \frac{d_2}{d_1+d_2}\cdot \vec{p} + \frac{d_1}{d_1+d_2} \vec{q} pm =d1+d2d2p +d1+d2d1q

如果大家觉得有用,就请点个赞吧~

  • 24
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的大熊猫

你的鼓励将是我写作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值