函数拟合是人工神经网络的理论基础。基于人工神经网络的机器学习的理论基石是如下定理:多层神经网络可以拟合任何函数(这种说法不够严谨,但基本意思是这样的)。与此相关的一个定理是:多项式可以逼近任何连续函数。
传统的方法是线性拟合,包括广义的线性回归方法(GLM)和高维回归方法(SVM)等。线性回归方面有个致命的缺陷,即解决不了非线性问题。最简单的非线性运算异或(XOR),即使用最复杂的线性回归方法也无法拟合。
从线性到非线性,是重大的飞跃。人工神经网络其实跟神经没有一点关系,其本质是一串级联的线性变换。正是通过线性变换的级联,实现了从线性到非线性的转变。这一思想在很早之前即出现,但真正得以应用,则是在很晚之后了。
主要的问题不在于理论,而在于工程。一是结构方面的问题,由于神经网络结构灵活性,造成模型的不稳定;二是计算的问题,网络收敛需要用到最优化方法,其计算量巨大。近几年来,神经网络的主要进步即在这两方面。结构方面,发展了多种类型的神经网络,其核心是规范网络的灵活性;计算方面,算法的进步加上GPU计算使得运算时间在可接受的范围内。
目前,基于人工神经网络的机器学习方法已经取得了举世瞩目的应用成就。在图形、语音识别,自动控制,计算机围棋等方面得到了历史最好的结果。有理由相信,这只是开始。