算法之时间与空间复杂度

为什么需要复杂度分析?

如果发布上去通过运行代码的方式来查看运行效率,会有如下问题:

  1. 测试结果非常依赖测试环境
    测试环境中硬件的不同会对测试结果有很大的影响

  2. 测试结果受数据规模的影响很大
    如果测试数据规模太小,测试结果可能无法真实地反应算法的性能

所以,我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法。这就是我们今天要讲的时间、空间复杂度分析方法。

大 O 复杂度表示法

算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间呢?

我们先来试着分析两段代码的执行时间:

前提:假设每行代码执行的时间都一样,定义为 unit_time

  1. 求 1,2,3…n 的累加和:
function sum(n) {
  var sum = 0;
  var i = 1;
  for (; i <= n; ++i) {
    sum = sum + i;
  }
  return sum;
}

其中第 2、3 行只执行一次,所以分别需要 1 个 unit_time 的执行时间,而第 4、5 行代码都运行了 n 遍,所以需要 2n * unit_time 的执行时间,所以总共的执行时间为 (2n+2)*unit_time

  1. 嵌套循环
function sum(n) {
  var sum = 0;
  var i = 1;
  var j = 1;
  for (; i <= n; ++i) {
    j = 1;
    for(; j <= n; ++j) {
      sum = sum + i * j
    }
  }
  return sum;
}

其中第 2、3、4 行只执行一次,所以分别需要 1 个 unit_time 的执行时间 ,而第 5、6 行代码都运行了 n 遍,所以需要 2n * unit_time 的执行时间,第 7、8 行代码循环执行了 遍,所以需要 2n² * unit_time 的执行时间,所以总共的执行时间为 (2n²+2n+3)*unit_time

通过两段代码执行时间的分析,可以得出:所有代码的执行时间 T(n) 与每行代码的执行次数 n 是成正比的
可以用一个公式来表示这种关系:

T(n) = O(f(n))

  1. T(n):表示代码的执行时间
  2. n:表示数据规模的大小
  3. f(n):表示一个公式,像上面的 2n + 2(2n²+2n+3),表示所有代码执行的次数总和
  4. O:表示代码的执行时间 T(n) 与 f(n) 表达式成正比
    第一个例子可以表示为 T(n) = O(2n+2) ,第二个例子表示为 T(n) = O(2n²+2n+3)。这就是大 O 时间复杂度表示法

大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度

由公式可以看出,当 n 很大时,比如达到 10000,甚至 100000,此时公式中的低阶、常量、系数三部分就可以忽略不计,那么刚刚两个示例的时间复杂度可以简化为: T(n) = O(n)T(n) = O(n²)

时间复杂度分析

介绍了大 O 时间复杂度的表示方法,那么要如何分析一段代码的时间复杂度呢?

  1. 只关注循环执行次数最多的一段代码
    在分析一个算法、一段代码的时间复杂度的时候,只关注循环执行次数最多的那一段代码就可以了。比如前面的例子
function sum(n) {
  var sum = 0;
  var i = 1;
  for (; i <= n; ++i) {
    sum = sum + i;
  }
  return sum;
}

其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)

  1. 加法法则:总复杂度等于量级最大的那段代码的复杂度
    为了便于理解,示例代码如下:
function sum(n) {
  var sum_1 = 0;
  var i = 1;
  for (; i <= 100; ++i) {
    sum_1 = sum_1 + i;
  }
  var sum_2 = 0;
  var j = 1;
  for (; j <= n; ++j) {
    sum_2 = sum_2 + j;
  }
  var sum_3 = 0;
  var m = 1,
    q = 1;
  for (; m <= n; ++m) {
    q = 1;
    for (; q <= n; ++q) {
      sum_3 = sum_3 + i * j;
    }
  }
  return sum_1 + sum_2 + sum_3;
}

这段代码分为三部分,分别是求 sum_1sum_2sum_3。将下来我们来分别分析下每一部分的时间复杂度,然后取一个量级最大的作为整段代码的复杂度。

第一段求 sum_1 的时间复杂度是多少呢?

这段代码执行了 100 次,是个常量的执行时间,跟 n 的规模无关,所以可以忽略。

别说是 100 次,就算循环了 100000 次,只要是个已知的数,跟 n 无关,也就只是个常量级的执行时间,当 n 无限大的时候,就可以忽略不计。另外时间复杂度表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有影响。

第二段代码跟上面第一个示例是类似的,时间复杂度为 O(n)

第三段代码跟上面第二个示例是类似的,时间复杂度为 O(n²)

分析完三段代码的时间复杂度后,取其中最大的量级,很明显是 O(n²)

也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。
将这个规律抽象成公式如下:

如果 T1(n)=O(f(n))T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)),O(g(n))) =O(max(f(n), g(n)))

  1. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
    为了便于理解,示例代码如下:
function sum(n) {
  var sum = 0;
  var i = 1;
  for (; i <= n; ++i) {
    sum = sum + extra(i);
  }
  return sum;
}
function extra(n) {
  var sum = 0;
  var i = 1;
  for (; i < n; ++i) {
    sum = sum + i;
  }
  return sum;
}

sum 函数里,第 2、3 行只会执行一次,是个常量级的,忽略不计,重点在第 4、5 行。

如果 extra 函数只是个普通的操作(非循环类的),那么第 4、5 行表示的时间复杂度就是 T1(n) = O(n)

extra 是循环类的操作,时间复杂度 T2(n) = O(n)

所以整个 sum 函数的时间复杂度为 T(n) = T1(n) * T2(n) = O(n*n) = O(n²)

几种常见时间复杂度实例分析

常见的复杂度量级有以下几种:
复杂度量级
对于刚罗列的复杂度量级,我们可以粗略地分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2n) 和 O(n!)。

当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。

下面重点来分析下常见的多项式时间复杂度

O(1)

O(1) 不是指只执行了一行代码,而是常量级时间复杂度的一种表示方法,比如如下代码的时间复杂度就是 O(1),而不是 O(3)

function sum() {
  var i = 0;
  var j = 1;
  var sum = i + j;
}

只要代码的执行时间不随 n 的增大而增长,这样的代码时间复杂度就是 O(1)

一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是 Ο(1)。

O(logn)、O(nlogn)

为了便于理解,增加示例代码如下:

function calc() {
  var i = 1;
  while (i <= n) {
    i = i * 2;
  }
}

第 4 行代码是循环执行次数最多的,只要统计出这行代码被执行的次数,也就知道 calc 函数的时间复杂度。
从代码中不难看出,变量 i 的值是从 1 开始,第循环一次就乘以 2,直到大于 n

用数学里的等比数列表示如下:
等比数列
所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2x=n 求解 x ,求得 x= log ⁡ 2 n \log_2 n log2n,所以,这段代码的时间复杂度就是 O( log ⁡ 2 n \log_2 n log2n)。
实际上不管是 O( log ⁡ 2 n \log_2 n log2n) 还是 O( log ⁡ 3 n \log_3 n log3n) ,只要是对数阶的,那么它时间复杂度就是 O(logn),为什么呢?

因为 log ⁡ 3 n \log_3 n log3n = log ⁡ 3 2 \log_3 2 log32 * log ⁡ 2 n \log_2 n log2n ,所以 O( log ⁡ 3 n \log_3 n log3n) = O( C * log ⁡ 2 n \log_2 n log2n) ,其中 C = log ⁡ 3 2 \log_3 2 log32 是个常量,根据前面的分析,在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以 O( log ⁡ 3 n \log_3 n log3n) 就等于 O( log ⁡ 2 n \log_2 n log2n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)

O(nlogn) 实际上就是一段时间复杂度为 O(logn) 的代码,循环执行了 n 遍,那么它的时间复杂度就是 O(nlogn)

比如如下代码:

function sum(n) {
  var sum = 0;
  var i = 1;
  for (; i <= n; ++i) {
    sum = sum + extra(i);
  }
  return sum;
}
function extra(n) {
  var i = 1;
  while (i <= n) {
    i = i * 2;
  }
  return i
}

另外像归并排序、快速排序的时间复杂度都是 O(nlogn)

O(m+n)、O(m*n)

为了便于理解,添加如下代码:

function sum(n, m) {
  var sum_1 = 0;
  var i = 1;
  for (; i <= n; ++i) {
    sum_1 = sum_1 + i;
  }
  var sum_2 = 0;
  var j = 1;
  for (; j <= m; ++j) {
    sum_2 = sum_2 + j;
  }
  return sum_1 + sum_2;
}

前面的时间复杂度都是由单个数据的规模(n)来决定的,而这个示例中存在两个数据规模 mn,由于无法事先评估 m 和 n 谁的量级更大,所以不能简单地复用加法法则,省去其中一个,取最大值。所以,上面代码的时间复杂度为 O(m+n)

当有多个数据规模时,加法规则要表示为 T1(m) + T2(n) = O(f(m) + g(n)),乘法法则仍然有效:T1(m)*T2(n) = O(f(m) * f(n))。

空间复杂度分析

时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系

类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系

添加示例代码如下:

function sum(n) {
  var i = 0;
  var arr = new Array(n);
  for (; i < n; ++i) {
    arr[i] = i * i;
  }
  return arr;
}

在第 2 行代码中,申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 无关,可以忽略不讲,第 3 行申请了一个大小为 n 的数组,除此之外,其余代码并没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)

我们常见的空间复杂度就是 O(1)O(n)O(n² ),像 O(logn)O(nlogn) 这样的对数阶复杂度平时都用不到。

空间复杂度分析比时间复杂度分析要简单很多。

总结

复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。常见的复杂度并不多,从低阶到高阶有:O(1)O(logn)O(n)O(nlogn)O(n² )
复杂度

参考链接

数据结构与算法之美

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值