/*
题意:给出一棵树,再给出M条新边,问删除一条树边以及一条新边,使之至少变为两部分的方案数
对于新边(a,b),会在a->LCA(a,b)->b这里形成一个环,所以删除新边(a,b)以及这个环上的没有被其他环覆盖的边
即可分成两部分。所以问题转化为求每条边被环覆盖的次数
设dp[x]表示x所在的父边被覆盖的次数
引进一条新边(a,b)后,dp[a]++,dp[b]++
而这个环上的其他边的统计可以用treeDP解决,即for(v)
dp[u]+=dp[v]
注意到LCA(a,b)的父边是不在环上的,所以每次引进新边(a,b),dp[LCA[a,b]]-=2
最后,if(dp[i]==1)ans++ 删除该边及覆盖它的那个环
if(dp[i]==0)ans+=M 表明这条树边是桥,删除它及任意一条新边都可以
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <iostream>
#include <vector>
#include <utility>
#include <algorithm>
using namespace std;
const int MAXN = 100010;
int n, m;
int head[MAXN], len;
int qhead[MAXN], qlen;
bool visit[MAXN];
int father[MAXN];
int dp[MAXN];
long long ans;
struct Node
{
int v, w, next;
Node() {}
Node(int t_v, int t_w, int t_next) : v(t_v), w(t_w), next(t_next) {}
}edges[2*MAXN], query[2*MAXN];
void addEdge(int u, int v, int w)
{
edges[len].v = v, edges[len].w = w, edges[len].next = head[u];
head[u] = len++;
}
void addQuery(int u, int v, int id)
{
query[qlen].v = v, query[qlen].w = id, query[qlen].next = qhead[u];
qhead[u] = qlen++;
}
int find_set(int x)
{
return (father[x] == x ? x : father[x] = find_set(father[x]));
}
void Tarjan(int u)
{
visit[u] = true;
father[u] = u;
for(int i = qhead[u]; i != -1; i = query[i].next)
{
int v = query[i].v;
if(visit[v])
{
dp[u]++, dp[v]++, dp[find_set(v)] -= 2;
}
}
for(int i = head[u]; i != -1; i = edges[i].next)
{
int v = edges[i].v;
if(!visit[v])
{
Tarjan(v);
father[v] = u;
}
}
return ;
}
void dfs(int u)
{
visit[u] = true;
for(int i = head[u]; i != -1; i = edges[i].next)
{
int v = edges[i].v;
if(visit[v]) continue;
dfs(v);
if(dp[v] == 0)
ans += m;
if(dp[v] == 1)
ans++;
dp[u] += dp[v];
}
return ;
}
void Init()
{
for(int i = 1; i <= n; ++i)
{
father[i] = i;
}
len = qlen = 0;
memset(dp, 0, sizeof(dp));
memset(head, -1, sizeof(head));
memset(qhead, -1, sizeof(qhead));
memset(visit, false, sizeof(visit));
}
int main()
{
//freopen("aa.in", "r", stdin);
//freopen("bb.out", "w", stdout);
int u, v;
while(scanf("%d %d", &n, &m) != EOF)
{
Init();
for(int i = 1; i < n; ++i)
{
scanf("%d %d", &u, &v);
addEdge(u, v, 0);
addEdge(v, u, 0);
}
for(int i = 1; i <= m; ++i)
{
scanf("%d %d", &u, &v);
addQuery(u, v, 0);
addQuery(v, u, 0);
}
Tarjan(1);
memset(visit, false, sizeof(visit));
ans = 0;
dfs(1);
cout << ans << endl;
}
return 0;
}
POJ 3417 Network
最新推荐文章于 2020-09-29 00:23:00 发布