canny边缘检测法是高斯函数的一阶微分,它能在噪声抑制和边缘检测之间取得较好的平衡.
环境:windows xp+matlab 2010b
时间:2011/12/25
canny算法检测边缘主要步骤:
1)用3x3高斯滤波器进行滤波,消除噪声;
2)针对每一个像素,计算横向与纵向两方向的微分近似,以得到像素的梯度大小和方向;
3)对梯度进行"非极大抑制"(非局部最大值置0);
4)对梯度取两次阈值;
5)对边缘进行连接;
下面详细说明各个步骤:
0)读入图像:
clear; clc; i=imread('light.jpg'); k=rgb2y(i);%获取h分量,即亮度分量
根据边缘的定义,边缘检测的目的是标识数字图像中亮度变化明显的点。(参考维基百科http://zh.wikipedia.org/wiki/%E8%BE%B9%E7%BC%98%E6%A3%80%E6%B5%8B);
又根据公式Brightness = 0.3 * R + 0.6 * G + 0.1 * B;计算出亮度分量y;
function k=rgb2y(z) %i必须为rgb三维矩阵 [m,n,p]=size(z); k=zeros(m,n); z=double(z); for i=1:m for j=1:n k(i,j)=0.3*z(i,j,1)+0.6*z(i,j,2)+0.1*z(i,j,3); end end
1)用3x3高斯滤波器进行滤波,消除噪声;
function j=gaosi(i); %i必须为二维double矩阵 j=i; [h,w]=size(i); for m=2;h-1 for n=2:w-1 j(m,n)=(i(m,n-1)+2*i(m,n)+i(m,n+1))/4;%横向高斯滤波 end end
利用上面自定义的gaosi函数对图像进行二维3x3滤波,
k1=gaosi(k);%横向滤波 k1=k1';%对图像进行转置,为下一步纵向滤波作准备(纵向滤波==转置后横向滤波) k1=gaosi(k1); k1=k1';%还原
2)针对每一个像素,计算横向与纵向两方向的微分近似,以得到像素的梯度大小和方向;
利用上式,易知p,q分别为计算出的横向、纵向的微分近似,由此再计算出梯度的大小和方向。
%计算梯度的大小和方向 [h,w]=size(k); for m=2:h-1 for n=2:w-1 zz1=k1(m,n-1)+k1(m+1,n-1); zz2=k1(m,n)+k1(m+1,n); zz3=k1(m,n-1)+k1(m,n); zz4=k1(m+1,n-1)+k1(m+1,n); kp(m,n)=0.5*(zz2-zz1); kq(m,n)=0.5*(zz3-zz4); kfu(m,n)=sqrt((kp(m,n)^2)+(kq(m,n)^2));%梯度大小 kjiao(m,n)=atan(kq(m,n)/(kp(m,n)+0.001));%梯度方向,0.001防止分母为0 end end
3)对梯度进行"非极大抑制"(非局部最大值置0);
1.先将梯度方向归类为四个主要方向,左右、上下、左斜、右斜。
%非极大值抑制 %首先将梯度方向划分为4个方向0,45,90,135(以及他们的反向延长线) for m=2:h-1 for n=2:w-1 if kjiao(m,n)>=3/8*pi kjiao(m,n)=2; else if kjiao(m,n)>=1/8*pi kjiao(m,n)=1; else if kjiao(m,n)>=-1/8*pi kjiao(m,n)=0; else if kjiao(m,n)>=-3/8*pi kjiao(m,n)=3; else kjiao(m,n)=2; end end end end end end
根据划分后的4个方向,判断该点是否是8邻域的局部最大值(梯度方向),比如,梯度方向为左右方向的点,判断其是否比左右两点的值来的大,如果不是,使该点的值为0.
%按照各个方向分别判断 k2=k1; for m=2:h-1 for n=2:w-1 if kjiao(m,n)==0 if k1(m,n)>k1(m,n-1)&&k1(m,n)>k1(m,n+1); else k2(m,n)=0; end end if kjiao(m,n)==1 if k1(m,n)>k1(m+1,n-1)&&k1(m,n)>k1(m-1,n+1); else k2(m,n)=0; end end if kjiao(m,n)==2 if k1(m,n)>k1(m-1,n)&&k1(m,n)>k1(m+1,n); else k2(m,n)=0; end end if kjiao(m,n)==3 if k1(m,n)>k1(m-1,n-1)&&k1(m,n)>k1(m+1,n+1); else k2(m,n)=0; end end end end
4)对梯度取两次阈值;
用两个阈值t1和t2(t2>t1,一般取t2=2*t1),我们把梯度值小于t1的像素的灰度设为0,得到图像1,然后我们把梯度值小于t2的像素的灰度设为0,得到图像2。由于图像2的阈值较高,噪音较少(但同时也损失了有用的边缘信息,而图像1的阈值较低,保留了较多信息,因此我们可以以图像2为基础,以图像1为补充来连接图像的边缘。
%两次阈值分割 k3=k2;%以t1为阈值分割后的矩阵 k4=k2;%以t2为阈值分割后的矩阵 t1=50; t2=2*t1; for m=2:h-1 for n=2:w-1 if kfu(m,n)<t1 k3(m,n)=0; end if kfu(m,n)<t2 k4(m,n)=0; end end end
5)对边缘进行连接;
a.扫描图像2,当我们遇到一个非零值的像素p时(跟踪以p为开始点的轮廓线直到该轮廓线的终点q;
b.在图像1中,考察与图像2中p点位置对应的点p'的8邻域,如果在p'点的8邻域中有非零像素q'存在,将其包括到图像2中,作为点r,从r开始(重复第a步,直到我们在图像1和图像2中都无法继续为止;
c.我们已经结束了对包含p的轮廓线的连接,将这条轮廓标记为已访问过,回到第a步,寻找下一条轮廓线,重复第(a)(b)(c)步直到图像2中再也找不到新轮廓线为止.
findline.m:
function [ff,flag1]=findline(k3,k4,flag,m,n) flag1=flag; m1=m+1;n1=n+1; while(m~=m1||n~=n1)%若m和n都不发生变化,表明line已到终点 flagg=0; for i=1:3 if(flagg==1) break; end for j=1:3 if k3(m-2+i,n-2+j)~=0 k4(m-2+i,n-2+j)=255; m1=m-2+i;n1=n-2+j;%新的[m,n]点 flag1(m,n)=1;%标记已检测过 flagg=1;break; end end end m=m1;n=n1; end ff=k4;
主函数里写上:
figure; subplot(221);imshow(i);title('原图像'); subplot(222);imshow(k3,[]);title('阈值为50的分割图像'); subplot(223);imshow(k4,[]);title('阈值为100的分割图像'); flag=zeros(h,w);%标记该点是否以检测过,1表示检测过 for m=2:h-1 for n=2:w-1 if k4(m,n)~=0&&flag(m,n)==0 [k4,flag]=findline(k3,k4,flag,m,n); end end end subplot(224);imshow(k4,[]);title('修正后的分割图像');
至此,程序完成。