关于textsum

原始目的是要找自动文本摘要的东西,找出来一串word2vec,LDA,textRank,textsum,seq2seq+attention,还有更优秀的论文,直接用CNN实现了RNN的encoder和decoder(201705,Facebook AI,Convolutional sequence to sequence learning),更有直接用attention实现的端到端的网络(201706,google, Attention is all you need.)

下一步找开源的代码,最好是算法比较先进的:

开始以seq2seq,seq2seq chinese,textsum,text summarization,textsum chinese,text summarization chinese为关键词在GitHub上查找,发现了python的包deepnlp,

于是在https://pypi.org/project/deepnlp/#history上面查找

一个一个点进去看,没有textsum,因此直接pip install 是不行的。

多方查阅发现以前deepnlp是有textsum的,不过现在没有了。

有人提供了这个网址:https://github.com/tensorflow/models/tree/master/research/textsum,目前是可用的(记住这个时间,因为有可能过一段时间就不能用了),在上一层目录https://github.com/tensorflow/models/tree/master/research包含了众多dl model,可以借鉴学习。另外关于textsum可以参考博客https://blog.csdn.net/rockingdingo/article/details/55224282

总之,textsum连接:https://github.com/tensorflow/models/tree/master/research/textsum,目前20190314可用。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值