No module named pip】升级pip失败还被迫卸载 升级pip失败:pip install --upgrade pippip被迫卸载:pip list解决办法:python -m ensurepip继续升级:python -m pip install --user --upgrade pip
【IJCAI2019】Learning to Select Knowledge for Response Generation in Dialog Systems p7 in 2019/12/12论文名称:Learning to Select Knowledge for Response Generation in Dialog Systems… … … :论文作者:Rongzhong Lian, Min Xie, Fan Wang, Jinhua Peng, Hua Wu论文来源:IJCAI2019下载链接:https://arxiv.org...
【ACL2019】Proactive Human-Machine Conversation with Explicit Conversation Goal p6 in 2019/12/11论文名称:Proactive Human-Machine Conversation with Explicit Conversation Goal… … … :让机器有自主意识的和人类对话论文作者:Wenquan Wu, Zhen Guo, Xiangyang Zhou, Hua Wu, Xiyuan Zhang, Rongzhong Lian and ...
【AAAI2019】Exploring Answer Stance Detection with Recurrent Conditional Attention p5 in 2019/12/10论文名称:Exploring Answer Stance Detection with Recurrent Conditional Attention… … … :使用循环条件注意力结构探索回答立场检测任务论文作者:袁建华,赵妍妍,许静芳,秦兵论文来源:AAAI2019下载链接:https://wvvw.aaai.org/ojs/index.php/A...
【EMNLP2019】Knowledge Aware Conversation Generation with Explainable Reasoning over Augmented Graphs p4 in 2019/12/9论文名称:Knowledge Aware Conversation Generation with Explainable Reasoning over Augmented Graphs… … … :基于可解释图推理的知识感知对话生成模型论文作者:Zhibin Liu, Zheng-Yu Niu, Hua Wu, Haifeng Wang论文来源:EMNL...
【ICJAI2018】Commonsense Knowledge Aware Conversation Generation with Graph Attention p3 in 2019/12/5论文名称:Commonsense Knowledge Aware Conversation Generation with Graph Attention… … … :具有图注意力的常识知识感知会话生成系统论文作者:HaoZhou, TomYoung, MinlieHuang, HaizhouZhao, JingfangXu, XiaoyanZhu论文来源...
【ACL2017】Sequential Matching Network p2 in 2019/12/4论文名称:Sequential Matching Network: A New Architecture for Multi-turn Response Selectionin Retrieval-Based Chatbots论文作者:YuWu, WeiWu, ChenXing, ZhoujunLi, MingZhou论文来源:ACL2017下载链接:htt...
【EMNLP2019】Event Representation Learning Enhanced with External Commonsense Knowledge 论文名称:Event Representation Learning Enhanced with External Commonsense Knowledge… … … :常识信息增强的事件表示学习论文作者:丁效,廖阔,刘挺,段俊文,李忠阳论文来源:EMNLP2019下载链接:https://arxiv.org/pdf/1909.05190.pdf源码链接:https://githu...
【转】一些因素对F1值的影响 截自:https://blog.csdn.net/qq_27590277/article/details/88374695https://blog.csdn.net/qq_27590277/article/details/88367082一些因素对F1值的影响如果还没了解F1值的话,这里有我之前写的通俗易懂的文章详谈P(查准率),R(查全率),F1值通过控制变量法,对以下...
【转】欧几里德结构数据(Euclidean Structure Data) 以及非欧几里德结构数据(Non-Euclidean Structure Data) 本文转载自:《学习geometric deep learning笔记系列》第一篇,Non-Euclidean Structure Data之我见本文是笔者在学习Geometric deep learning的过程中的一些笔记和想法,较为零散,仅仅当作自娱自乐,如有谬误,勿怪勿嗔,请在评论区联系笔者讨论指出,谢谢。总的来说,数据类型可以分为两大类,分别是:欧几里德结构数据(Euclid...
【转】IEEE论文免费下载 转载自:https://blog.csdn.net/julialove102123/article/details/80049846#comments1. SCI-hub网址 :sci-hub.tw或http://sci-hub.tw/2.URL下载: 在IEEE(http://ieeexplore.ieee.org/Xplore/home.jsp)上查找一片论文, 复制链...
使用tree命令导出文件夹/文件的目录树 cmdcd 目标文件夹tree /f >tree.txt注释:/F显示每个文件夹中文件的名称。(带扩展名)/A使用 ASCII 字符,而不使用扩展字符。tree /f > list.txt-- 将带扩展名的文件目录输出到list.txt文件中如果只想要文件夹的目录 ,那么输入 tree >tree.txt示例:...
【转】python数据库编程, pymysql, Connect, cursor, commit, rollback , fetchall 转载自:https://blog.csdn.net/vivian_wanjin/article/details/82778589import pymysqlclass JD(object): def __init__(self): self.dic = {0: self.__close, 1: self.__fetch_a...
Segmentation fault (core dumped) 使用gdb调试这个错误,具体的使用方法是:在命令行中输入gdb,然后使用file python指令加载python环境,接下来使用run ***.py arg1 arg2 ...,这样调试器gdb就会在遇到的第一个错误处停下来。我们观察这个调试信息,发现最后问题定位在哪然后解决哪reference:https://www.cnblogs.com/visiontony/p...
余弦相似度 import scipyimport torchdef calculate_distances(features1,features2): return scipy.spatial.distance.cdist(features1,features2, "cosine")def cosine_similarity_torch(features1, features2):...
【统计学习方法】||7支持向量机 【支持向量机】支持向量机(support vector machines, SVM)是一种二类分类模型(判别模型)。它的基本模型是定义在特征空间上的间隔最大的线性分类器。支持向量机包括:线性可分支持向量机(linear support vector machine in linearly separable case)、线性支持向量机(linear support vector machin...
【统计学习方法】||8集成学习 【集成学习】集成学习是一大类模型融合策略和方法的统称,其中包含多种集成学习的思想。是一种分类和回归模型。(判别模型)集成学习的种类有:Boosting, Bagging 。提升树(boosting)是2000年由Friedman等人提出。AdaBoost算法是1995年由Freund和Schapire提出。“三个臭皮匠,顶一个诸葛亮”1.模型Q1:如何得到若干个...
【统计学习方法】||5决策树 【决策树】1986年Quinlan提出ID3算法,1993年Quinlan又提出C4.5算法,1984年Breiman等人提出CART算法。决策树是一个呈树形的分类与回归模型。(判别模型)决策树学习包括3个步骤:特征选择、决策树的生成和决策树的修剪。奥卡姆剃刀定律:“如无必要 勿增实体”, 即”简单有效原理”。0.预备信息熵,信息量的期望;互信息,度量X在知道Y...
【统计学习方法】||3K近邻法 【K近邻法】1968年由Cover和Hart提出。k近邻法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测。k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。1.模型2.三个基本要素k近邻法三要素:k值得选择、距离度量和分类决策规则。 2.1 k值的选择...
【统计学习方法】||6逻辑回归 【逻辑回归】逻辑回归模型是对数线性模型的分类模型。(判别模型)(逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。)0.伯努利分布伯努利分布(Bernoulli distribution)又名两点分布或0-1分布,介绍伯努利分布前首先需要引入伯努利试验(Bernoulli trial)。伯努利试验是只有两种可能结果的...
Linux,各种包的安装历程 1、pip3直接装系列# 升级pip3pip3 install --upgrade pip# 常用包pip3 install keraspip3 install sklearnpip3 install jiebapip3 install tensorflowpip3 install --upgrade gensimpip3 install textrank4zhpip3 ...
linux配置neo4j 基本步骤根据:https://www.jianshu.com/p/b3a978d4f77f几个注意点:1.直接在FlashFXP中右击编辑修改变量环境/etc/profile后,/etc/profile里面有一些异常,使用cat -v /etc/profile检查,发现里面大量的Windows下的换行符。(依据:https://www.cnblogs.com/kerrycode...
【统计学习方法】||2感知机 【感知机】1957年由Rosenblatt提出,是神经网络与支持向量机的基础。感知机旨在求出将训练数据进行线性划分的分离超平面。(判别模型)(存在一个线性函数分离的超平面能将训练数据划分为正负两类。解不唯一,依赖于初始值的选择。若要唯一,请看线性支持向量机。)1.模型wx+b是一个n维空间中的超平面S,其中w是超平面的法向量,b是超平面的截距,这个超平面将特征空间划分成...
使用GloVe训练中文语料 0.安装gcc在运行前务必确保ubuntu下有gccgcc --version# 如果没有则安装:yum install gcc1.准备语料准备好语料并进行分词,保存glove_corpus文件2.下载源码https://github.com/stanfordnlp/GloVe解压文件夹,将语料glove_corpus放入到GloVe的主文件夹下。3....
【转】GPU状态监测及tensorflow中指定GPU及GPU显存设置 GPU状态监测命令: nvidia-smi功能:显示机器上gpu的情况上图是服务器上 GeForce GTX 1080 Ti 的信息,下面一一解读参数。 上面的表格中的红框中的信息与下面的四个框的信息是一一对应的:GPU:GPU 编号; Name:GPU 型号; Persistence-M:持续模式的状态。持续模式虽然耗能大,但是在新的GPU应用启动时,花费的时间更少,这...
gensim相关功能函数及其案例 目录一、gensim介绍二、训练模型相关转换词频-逆文档频(Term Frequency * Inverse Document Frequency, Tf-Idf)潜在语义索引(Latent Semantic Indexing,LSI,or sometimes LSA)随机映射(Random Projections,RP)隐含狄利克雷分配(Latent Dirichle...
Tensorflow的一些函数 目录占位符:tf.placeholder函数构建图形:tf.name_scope函数tf.variable_scope函数tf.constant函数随机值函数:tf.random_uniform函数tf.transpose函数tf.nn.embedding_lookup函数rnn.LSTMStateTuple张量变换函数:tf.sequence_maskLI...
win,各种python包的安装历程…… win10-cpu快捷键:win+R,输入cmd,然后开始吧~keras-cpupip install keras# Successfully installed keras-2.2.4 keras-applications-1.0.6 keras-preprocessing-1.0.5tensorflow-cpupip install --upgrade tenso...
【转】用IDCNN和CRF做端到端的中文实体识别 本文转载自:用IDCNN和CRF做端到端的中文实体识别代码在: NER_IDCNN_CRF上篇文章聊到了关系提取,今天来聊聊实体识别。实体识别和关系抽取是例如构建知识图谱等上层自然语言处理应用的基础。实体识别可以简单理解为一个序列标注问题:给定一个句子,为句子序列中的每一个字做标注。因为同是序列标注问题,除去实体识别之外,相同的技术也可以去解决诸如分词、词性标注等不同的自然语言处理问题...
【转】用Bi-GRU和字向量做端到端的中文关系抽取 本文转载自:用Bi-GRU和字向量做端到端的中文关系抽取代码在: Information-Extraction-Chinese实体识别和关系抽取是例如构建知识图谱等上层自然语言处理应用的基础。关系抽取可以简单理解为一个分类问题:给定两个实体和两个实体共同出现的句子文本,判别两个实体之间的关系。使用CNN或者双向RNN加Attention的深度学习方法被认为是现在关系抽取state of...
【转】PyTorch实战指南 本文转载自:PyTorch实战指南作者:陈云这不是一篇PyTorch的入门教程!本文较长,你可能需要花费20分钟才能看懂大部分内容建议在电脑,结合代码阅读本文本指南的配套代码地址: chenyuntc/pytorch-best-practice 目录1 比赛介绍2 文件组织架构3 关于__init__.py4 数据加载5 模型定义6 工具函数...
【转】关系抽取(分类)总结 本文转载自:http://shomy.top/2018/02/28/relation-extraction/2018.10.14更新: 增加全监督关系抽取PCNN的复现代码: PCNN. 2018.07.08更新: 增加对远程监督两份数据集补充实验对比: 关系抽取实验. 2018.04.04更新:增加对NYT+Freebase数据集的两个版本的说明 对近几年(到2017)一些关系抽取/...
【读】关系抽取—(5)RESIDE: Improving Distantly-Supervised Neural Relation Extraction using Side Information 大趋势是历史的背景板,看清并且跟随;小趋势是环境的新变量,发现并且利用。这是一篇Relation Extraction相关的paper,出自于EMNLP 2018论文, Improving Distantly-Supervised Neural Relation Extraction using Side Information。目录Abstract1 Introducti...
【读】关系抽取—(4)Ranking-Based Automatic Seed Selection and Noise Reduction for Weakly Supervised Relation 本文转载自:ACL 2018论文解读 | 基于排序思想的弱监督关系抽取选种与降噪算法作者丨卢靖宇学校丨西安电子科技大学硕士研究方向丨自然语言处理 本期推荐的论文笔记来自 PaperWeekly 社区用户 @hawksilent。本文创造性地将 Bootstrapping 关系提取中的自动选种任务,以及远程监督关系提取中的降噪任务看成是根据不同的排序标准进行排序的问题,提出了多种...
【读】关系抽取—(3)A Walk-based Model on Entity Graphs for Relation Extraction 本文转载自:http://www.paperweekly.site/papers/notes/509 最近阅读了A Walk-based Model on Entity Graphs for Relation Extraction这篇文章,该工作来自于曼彻斯特大学,发表在ACL2018。文章提出了一种新的基于图的神经网络关系提取模型。该模型将句子中的实体看成是一个全连接图中的节点,节点...
【leetcode】中文版题库一刷ing 目录1. 两数之和2. 两数相加3. 无重复字符的最长子串4. 两个排序数组的中位数5. 最长回文子串6.Z字形变换7.正数反转8.字符串转换整数 (atoi)9.回文数LINK1. 两数之和给定一个整数数组和一个目标值,找出数组中和为目标值的两个数。你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用。示例:给定 nums =...
【读】关系抽取—(1)Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification 学习本无底,前进莫徬徨。这是一篇Relation Classification相关的paper,出自于中科大自动化所 Zhou ,Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification。收录于ACL 2016。目录Abstract1 Introductio...
【转】RL-GAN For NLP: 强化学习在生成对抗网络文本生成中扮演的角色 本文转载自:https://zhuanlan.zhihu.com/p/29168803目录【导读】本文全面系统性梳理介绍了强化学习用于发掘GAN在NLP领域的潜力,请大家阅读。1. 基础:文本生成模型的标准框架2. 问题:GAN为何不能直接用于文本生成2.1. GAN基础知识2.2. GAN面对离散型数据时的困境(啥是离散型数据?)3. 过渡方案:对于GAN的直接改...
【读】文本摘要—(1)Faithful to the Original: Fact Aware Neural Abstractive Summarization 非学无以广才,非志无以成学。没有找到原文章,只读了预讲会的ppt。出自于香港理工大学曹自强,Faithful to the Original: Fact Aware Neural Abstractive Summarization。收录于AAAI 2018。本文主要做了三个方面的工作:(1)基于卷积神经网络的sequence to sequence框架,将主题模型整合进自动摘要模型...
【读】seq2seq—(8)A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model for TextSum 第一篇非转载,而是尝试自己写阅读笔记,虽然感觉变成了整篇翻译…以后慢慢改进吧。学然后知不足。这是一篇Abstractive Text Summarization相关的paper,出自于腾讯知文团队、苏黎世联邦理工学院、哥伦比亚大学和腾讯 AI Lab,A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model fo...
【转】TextCNN 本文摘自:https://zhuanlan.zhihu.com/p/40651970CNN 文本分类采取 CNN 方法进行文本分类,相比传统方法会在一些方面有优势。 基于词袋模型的文本分类方法,没有考虑到词的顺序。基于卷积神经网络(CNN)来做文本分类,可以利用到词的顺序包含的信息。如图展示了比较基...
【读】机器学习摘要汇总 本文转载自:教机器学习摘要目录问题描述语料模型结果思考参考文献文本摘要是自然语言处理中比较难的一个任务,别说是用机器来做文摘了,就连人类做文摘的时候都需要具备很强的语言阅读理解能力和归纳总结能力。新闻的摘要要求编辑能够从新闻事件中提取出最关键的信息点,重新组织语言来写摘要;paper的摘要需要作者从全文中提取出最核心的工作,然后用更加精炼的语言写成摘要;综述性的...
【读】AttSum: Joint Learning of Focusing and Summarization with Neural Attention 本文转载自:自动文摘(八)目录AbstractIntroductionQuery-Focused Sentence RankingCNN LayerPooling LayerRanking LayerSentence SelectionExperimentsDatasetModel SettingEvaluation MetricBaseli...
【读】自动文摘——预备 本文转载自:自动文摘(一)、自动文摘(二)、自动文摘(三)、自动文摘(四)目录一、前言IdeasIntroductionLink二、抽取式Extractive Summarization预处理词、句表示排序后处理输出Link三、难点AbstractiveEvaluation人工评价自动评价重要性四、生成式摘要E...
【读】seq2seq—(7)Incorporating Copying Mechanism in Sequence-to-Sequence Learning 本文转载自:自动文摘(十三)目录综述Seq2SeqCOPYNET模型综述拷贝模式和生成模式状态更新M矩阵实验文本摘要Link天下武功,唯快不破今天分享的paper是Incorporating Copying Mechanism in Sequence-to-Sequence Learning,作者来自香港大学和华为诺亚方舟实验室。本文...
【读】seq2seq—(6)Neural Headline Generation with Minimum Risk Training 本文转载自:自动文摘(十)目录综述NHG模型EncoderDecoderMRT+NHGMLEMRTROUGE实验结果Link心是自由的,世界就是自由的今天分享的paper是Neural Headline Generation with Minimum Risk Training。本文通过将评价指标融入目标函数来训练模型,在中文和英文数...
【读】seq2seq—(5)UNK问题 本文转载自:自动文摘(十)目录MotivationSolutionChar-basedVocabulary expansionOutput layer boostPointing/Copy 生活不只是眼前的苟且,还有paper和远方不知不觉坚持写自动文摘系列的博客已经50天了,本篇是系列的第十篇。其实说是系列文章并不准确,只是每篇博客与自动文摘有关系...
【读】seq2seq—(4)LCSTS: A Large Scale Chinese Short Text Summarization Dataset 本文转载自:自动文摘(九)目录AbstractIntroductionData CollectionData PropertiesExperimentConclusion and Future WorkLink 坚持下去就是胜利。今天分享一篇关于构造自动文摘数据集的paper,数据集的质量、内容和规模都是直接影响deep learning效果的最...
【读】seq2seq—(3)Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond 本文转载自:自动文摘(六)目录AbstractIntroductionRelated workModelsEncoder-Decoder with AttentionLarge Vocabulary TrickVocabulary expansionFeature-rich EncoderSwitching Generator/PointerHier...
【读】seq2seq—(2)Abstractive Sentence Summarization with Attentive Recurrent Neural Networks 本文转载自:自动文摘(六)目录AbstractIntroductionRelated WorkBackgroundModel Objective Encoder Decoder Generation TrainingExperiment Datase...
【读】seq2seq—(1)Generating News Headlines with Recurrent Neural Networks 本文转载自:自动文摘(五)目录AbstractModelOverviewAttentionDatasetOverviewPreprocessingDataset IssuesEvaluationAnalysisUnderstanding information stored in last layer of the neural network...
【转】漫谈Word2vec之skip-gram模型 本文转载自:https://mp.weixin.qq.com/s/reT4lAjwo4fHV4ctR9zbxQ word2vec是Google研究团队的成果之一,它作为一种主流的获取分布式词向量的工具,在自然语言处理、数据挖掘等领域有着广泛的应用。达观数据的文本挖掘业务有些地方就使用了该项技术。本文从以下几个方面简要介绍Word2vec的skip-gram模型: 第一部分对比wor...
【转】fastText原理及实践 本文转载自:https://zhuanlan.zhihu.com/p/32965521 fastText是Facebook于2016年开源的一个词向量计算和文本分类工具,在学术上并没有太大创新。但是它的优点也非常明显,在文本分类任务中,fastText(浅层网络)往往能取得和深度网络相媲美的精度,却在训练时间上比深度网络快许多数量级。在标准的多核CPU上, 能够训练10亿词级别语料库的词向...
【转】CNN与RNN中文文本分类-基于TENSORFLOW实现 本文转载自:https://gaussic.github.io/2017/08/30/text-classification-tensorflow/ 本章旨在使用TensorFlow API实现卷积神经网络与循环神经网络文本分类。代码地址:Github转载请注明出处:GaussicCNN做句子分类的论文可以参看: Convolutional Neural Networks ...
【转】Batchnorm原理详解 本文转载自:https://blog.csdn.net/qq_25737169/article/details/79048516 前言:Batchnorm是深度网络中经常用到的加速神经网络训练,加速收敛速度及稳定性的算法,可以说是目前深度网络必不可少的一部分。 本文旨在用通俗易懂的语言,对深度学习的常用算法–batchnorm的原理及其代码实现做一个详细的解读。本文主要包括以下几个部分...
【转】详解机器学习中的梯度消失、爆炸原因及其解决方法 本文转载自:https://blog.csdn.net/qq_25737169/article/details/78847691 前言本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案。本文分为三部分,第一部分主要直观的介绍深度学习中为什么使用梯度更新,第二部分主要介绍深度学习中梯度消失及爆炸的原因,第三部分对提出梯度消失及爆炸的解决方案。有基础的同鞋可以跳着阅读。 其...
【转】Word2Vec原理之层次Softmax算法 本文转载自:http://qiancy.com/2016/08/17/word2vec-hierarchical-softmax/ 在这个人工智能半边天,主流话题一天一变的现代世界里,不乏进步,也不乏泡沫,但Word2Vec依然是很富极客精神的典型代表,作者思路很巧妙,工程层面又很实用主义。词嵌入的假设,是通过一个词所在的上下文可以获得词的语义甚至语法结构,有相似上下文的词在向量空间中...
【转】完全图解RNN、RNN变体、Seq2Seq、Attention机制 本文转载自:https://zhuanlan.zhihu.com/p/28054589 本文主要是利用图片的形式,详细地介绍了经典的RNN、RNN几个重要变体,以及Seq2Seq模型、Attention机制。希望这篇文章能够提供一个全新的视角,帮助初学者更好地入门。一、从单层网络谈起在学习RNN之前,首先要了解一下最基本的单层网络,它的结构如图:输入是x,经过变换Wx+b和...