二维卷积神经网络的结构理解

针对这个图,我们对应着卷积的api函数来说:

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)

 

如上图:

第一列为一张输入图像, 大小为7*7*3, 即宽高为7*7, 通道数为3

所以inputs的维度就是: [-1, 7, 7, 3] , -1是表示batch的大小可以随意,基于输入决定

 

第二列和第三列为一个卷积层, 对应着参数filter, 它是一个4d的参数, 分别为卷积层的高,宽,图像通道数,卷积核数

宽高很显然是3*3, 就是第二列或者第三列里面的一个红色的矩形的宽高

图像通道数,对应着输入图像的通道数,也就是3,也就是第二列Filter W0或W1中的3*3矩形的个数, 可以看到上面第一列和第二列之间的连线,说明第一列的7*7的矩形个数和第二列的3*3的矩形个数要一致,都是图像的通道数

卷积核数&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生活不只*眼前的苟且

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值