Kruskal算法+并查集实现

对于稀疏图来说,用Kruskal写最小生成树效率更好,加上并查集,可对其进行优化。

Kruskal算法的步骤:

1.对所有边进行从小到大的排序。

2.每次选一条边(最小的边),如果形成环,就不加入(u,v)中,否则加入。那么加入的(u,v)一定是最佳的。

并查集:
我们可以把每个连通分量看成一个集合,该集合包含了连通分量的所有点。而具体的连通方式无关紧要,好比集合中的元素没有先后顺序之分,只有“属于”与“不属于”的区别。图的所有连通分量可以用若干个不相交集合来表示。

而并查集的精妙之处在于用数来表示集合。如果把x的父结点保存在p[x]中(如果没有父亲,p[x]=x),则不难写出结点x所在树的递归程序:

find(int x) {return p[x]==x?x:p[x]=find(p[x]);}

意思是,如果p[x]=x,说明x本身就是树根,因此返回x;否则返回x的父亲p[x]所在树的根结点。

既然每棵树表示的只是一个集合,因此树的形态是无关紧要的,并不需要在“查找”操作之后保持树的形态不变,只要顺便把遍历过的结点都改成树根的儿子,下次查找就会快很多了。如下图所示:

Kruskal算法+并查集实现

设第i条边的端点序号和权值分别保存在u[i],v[i],w[i]中,而排序后第i小的边保存在r[i]中。(间接排序是指排序的关键字是对象的代号,而不是对象本身。)
代码如下:

int cmp(const int i,const int j) {return w[i]

int find(int x) {return p[x]==x?x:p[x]=find(p[x]);}

int kruskal()

{

    int cou=0,x,y,i,ans=0;

    for(i=0;i

    for(i=0;i

    sort(r,r+m,cmp);

    for(i=0;i

    {

        int e=r[i]; x=find(u[e]); y=find(v[e]);

        if(x!=y) {ans += w[e]; p[x]=y;cou++;}

    }

    if(cou

    return ans;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值