机器学习方向数学基础教材推荐

1. 线性代数

  • 《高等代数——大学高等代数课程创新教材》(上下册) 丘维声 著 清华大学出版社
  • 《高等代数》(第四版) 北京大学数学系前代数小组 编 高等教育出版社
  • 《高等代数》 邱森 著 武汉大学出版社
  • 《Introduction to Linear Algebra, 5th Edition》by Gilbert Strang
  • 《Matrix Analysis, 2nd Edition》by Roger A.Horn and Charles R. Johnson
  • 《线性空间引论》(第二版) 希洛夫 著 高等教育出版社

2. 数学分析

  • 《数学分析》(第二版) (上下册) 陈纪修 著 高等教育出版社
  • 《Introduction to calculus and analysis》 by Richard Courant and Fritz John
  • 《Analysis I, II》 by Terence Tao

3. 概率统计

  • 《Statistical Inference, 2nd Edition》 by George Casella and Roger L. Berger
  • 《An Introduction to Probability Theory and Its Applications I, II 》 by William Feller
  • 《Applied Multivariate Statistical Analysis, 6th Edition》 by Richard A. Johnson and Dean W. Wichern
  • 《All of statistics》 by Larry Wasserman
  • 《The Bayesian Choice, 2nd Edition》 by Christian P. Robert

4. 随机过程

  • 《随机过程》 伊藤清 著 人民邮电出版社
  • 《随机过程论》 布林斯基 著 高等教育出版社
  • 《Stochastic Process, 2nd Edition》 by Sheldon Ross
  • 《General Theory of Markov Processes》 by Michael Sharpe

5. 优化

  • 《Convex Optimization》 by Stephen Boyd and Lieven Vandenberghe
  • 《Numerical Optimization, 2nd Edition》 by Jorge Nocedal and Stephen J. Wright
  • 《Nonlinear Programming, 3rd Edition》 by Dimitri P. Bertsekas
  • 《Convex Analysis and Optimization》 by Dimitri P. Bertsekas
  • 《Convex Optimization Algorithms》 by Dimitri P. Bertsekas

6. 流形

  • 《Introduction to Smooth Manifolds, 2nd Edition》 by John M. Lee
  • 《Introduction to Topological Manifolds》 by John M. Lee

7. 泛函分析

  • 《函数论与泛函分析初步》 (第七版) 柯尔莫戈洛夫 & 佛明 著 高等教育出版社

8. 群

  • 《Introduction to Lie Algebra》 by Karin Erdmann
  • 《Lie Groups Beyond an Introduction, 2nd Edition》 by Anthony W. Knapp

9. 图论

  • 《图论导引》 加里&查坦德 著 人民邮电出版社
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页