图深度学习
文章平均质量分 79
神经网络与图论,图神经网络,图卷积网络,graph attention network
明远AI
图理论,机器学习,知识发现,生物神经网络。
展开
-
零样本学习综述 Zero-Shot Learning(二):基于知识图谱的零样本学习 (Graph-based Zero-Shot Learning)
现有的视觉图像分类、目标检测、场景识别等技术大多基于监督学习,这些方法和技术需要进行大量的数据标注工作,对有标签的数据集进行人工智能算法的训练,得到相应的算法模型。但是仅仅是人类可识别的物体种类大约就有 3 万类,并且在不同场景下物体的状态不同,所得到的数据量及其庞大,要对如此多的图像进行类别数据标注极其费力。与此同时生活中的物体种类、生活场景等也在不断增长,数据也在不断增多,如何处理标注数据完全缺失的情景,是人们急需解决的一个问题,,在现实需求和技术发展的推动下,零样本学习逐步成为一个热门的研究方向。零原创 2020-05-13 16:59:25 · 5895 阅读 · 14 评论 -
图深度学习 Deep Learning on Graph
深度学习在图上的应用Zhang Z , Cui P , Zhu W . Deep Learning on Graphs: A Survey[J]. 2018.深度学习在大量领域表现出明显的效果,无论是语音,图像,还是自然语言处理。但是由于图结构数据具有独特的属性,深度学习并不是自然的适用。最近,在这个方向进行了大量的研究极大地促进了图分析技术。调研了可以应用于图的不同种类深度学习方法,主要...原创 2019-01-23 14:25:17 · 16016 阅读 · 4 评论 -
图神经网络模型 The Graph Neural Network Model
Abstract数据包含许多潜在关系可以表示为图,这些数据存在于科学和工程的众多领域,比如计算机视觉、分子化学、分子生物、模式识别以及数据挖掘。本文提出了一种新型的神经网络模型,称为图神经网络(GNN)模型,对现有的神经网络模型进行了拓展,适用于处理可以表示为图的数据。GNN模型通过一个函数τ(G,n)∈Rm\tau(G,n) \in \mathbb{R}^mτ(G,n)∈Rm将图GGG和其中的...原创 2019-01-12 15:24:32 · 30225 阅读 · 1 评论 -
图卷积网络 Graph Convolutional Networks
SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS本文提出了一个基于卷积神经网络处理图结构数据的半监督学习算法,原创 2019-01-18 14:36:50 · 11163 阅读 · 0 评论 -
图表示学习Graph Embedding:DeepWalk python实现
https://github.com/AI-luyuan/graph-embedding原创 2019-01-05 17:01:20 · 11708 阅读 · 22 评论