网络神经科学 Network neuroscience

近年来神经科学、信息科学、数学等学科都取得了众多的进展,但是我们依旧不能够对复杂的大脑功能、认知背后的原理和机制进行完整的描述和理解。网络神经科学通过将神经解剖学和复杂网络相结合,从大脑拓扑结构角度整合大脑的结构和功能,进而描述、记录、分析和建模神经生物学系统中的基本元素及其相互作用。网络神经科学特种了新的工具去创建全面的图谱来记录分子、神经元、大脑区域和社会系统之间的动态模式。同时网络神经科学使用现代网络科学的原理框架和计算工具对问题进行处理。网络神经科学开创了众多的新领域,包括网络动力学,大脑网络的操作控制以及跨时空域的网络综合处理。本文通过整理 2017 年和 2020 年发表在 Nature neuroscience 上的综述文章 “Network neuroscience”,“Dynamic representations in networked neural systems” 和 2018 年发表在 Nature reviews neuroscience 上的文章 “On the nature and use of models in network neuroscience”, 对网络神经科学进行概述。

多时空尺度网络

多时空尺度网络遍布在网络神经科学研究的众多领域。如下图所示,网络神经科学在空间尺度上的研究对象可以分为分子、突触、神经元、回路、系统、脑、组织、环境;在时间尺度上依次为毫秒、秒、分、小时、天、月、年。

从最小的分子开始,网络神经科学试图将基因和生物分子之间关系的编码信息与神经元之间共享信息进行关联。进一步网络神经科学探寻建立起一个整体框架,去理解神经元层的处理过程与大规模脑回路、脑系统和整体脑的结构、功能的关系。网络神经科学在此基础上进而探求中枢神经系统中的连接模式在驱动行为模式过程中的作用以及知觉和行为间相互联系。网络神经科学不仅仅将神经系统简化为按特定比例定义的组件,而且研究各个组件之间的复杂相互作用以及各种结构和功能对多尺度的依赖性。

在这里插入图片描述

神经科学中的基本网络模型

如下图所示,在神经科学中用来表示神经系统的最常用、最简单模型是构建一个网络用来表示神经单元间的连接模式,其中神经单元(分子、神经元、大脑区域等)表示为节点,连接模式表示为边。进一步可以根据研究场景设计边赋权图、点赋权图及其权重动态变化函数模式。多层网络、动态网络、超图以及单纯复形也是网络神经科学中的常用网络模型。

基础模型

多层网络与动态网络模型

多层网络模型反映了网络中多层次的相互关联集合;动态网络描绘了时间序列下网络系统重新配置的情况。动态网络又可以细分为网络上属性随时间的变化和网络本身结构随时间的变化。如下图a所示 网络中的节点和边的关联关系没有发生改变,节点附属的特征随时间进行了变化;如下图b所示,网络本身的节点和连接关系发生了变化。进一步研究这两种模式的混合模式将是未来的重要领域,神经科学需要更好地理解连接性的变化、灰质、神经递质水平、基因表达或其他节点特性的变化之间的关系。如下图c所示为混合模式。

在异质网络中,多层网络发挥着重要作用。如下图d所示,多层网络中的节点可以由不同类型的边进行连接,每一种边都被编码在不同的层。例如,这些层可以代表不同的时间点、对象、任务、大脑状态、年龄或成像方式。在多层网络中,某一层种的节点通过识别链接(一种独特的边)连接到其他层中的相应节点。
多动

神经科学中的基本网络度量指标

常用的度量指标包括度(与节点相关联的边的数量);聚集系数;空腔,(节点连接方式为圆环,并且圆环内部无连接);中心度,(反应节点的影响力);路径(描述信息传输潜力,网络联通性);社区划分;捷径(反应信息传输效率);核心外围结构(可促进从稀疏连接区域收集或发送到稀疏连接区域的信息的局部汇聚)。

在这里插入图片描述

网络模型类型的三个维度

等人假设可以把理解大脑结构、功能、发展和演化机制组织为模型类型的三种关键维度。如下图所示,第一个维度是从数据表示拓展到第一性原理方法(打破一切数据的束缚,从数据本源去探寻基础性的原理);第二个维度是从生物物理实体结构到现象功能描述的转变;第三个维度是从基本元素的描述到粗粒度区域的近似。
在这里插入图片描述

Bassett D S, Sporns O. Network neuroscience[J]. Nature neuroscience, 2017, 20(3): 353-364.
Ju H, Bassett D S. Dynamic representations in networked neural systems[J]. Nature Neuroscience, 2020: 1-10.
Bassett D S, Zurn P, Gold J I. On the nature and use of models in network neuroscience[J]. Nature Reviews Neuroscience, 2018, 19(9): 566-578.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值