动态规划算法0-1背包问题和剪绳子

1、问题描述:给定n种物品和一背包,物品i的重量是wi,其价值是pi,背包的容量是M,问如何选择装入背包中的物品总价值最大?

import java.util.ArrayList;
import java.util.HashMap;

/*
 * 实际就是一种分而治之的思想
 *   
每次加入新物品i的时候,将总的容量-物品i的容量即是前i-1种物品可以使用的,得出的价值+i的价值
与不加入物品i的价值看谁大
max{f(i-1,w),v(i)+f(i-1,w-wi)} w-wi为扣除i的剩余容量,在该容量情况下前i-1个物品的最大价值+i的价值与前i-1个物品在总容量不扣除i容量的情况下取更优方案
 * 
 * 
 * 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。因为背包的最终最大容量未知,
 * 所以,我们得从1到M一个一个的试,看放进去与不放进去哪个选择更优 */

public class DynamicPlan {

	public static void main(String[] args)
	{
		//第一维下标i表示物品id,第二维下标j表示各个容量值,数组实际值代表价值,c[0][..]全部赋值为0,以便第一
		int c[][]=new int[4][11];
	ArrayList<ArrayList<Integer>> al=new ArrayList<ArrayList<Integer>>();
	
	//物品1
	ArrayList<Integer> al1=new ArrayList<Integer>();
	al1.add(3); //物品大小
	al1.add(4);  //物品价值
	al.add(al1);
	//物品2
	ArrayList<Integer> al2=new ArrayList<Integer>();
	al2.add(4);
	al2.add(5);
	al.add(al2);
	//物品3
	ArrayList<Integer> al3=new ArrayList<Integer>();
	al3.add(5);
	al3.add(6);
	al.add(al3);
	
	for (int a=0;a<=10;a++)
		c[0][a]=0;
	int itemcount=al.size();
	for (int i=0;i<itemcount;i++) //i物品ID
	{
		int index=i+1; //物品id从1开始
		for (int j=0;j<=10;j++)  //j重量
		{
			//如果当前物品的重量小于容量j,才考虑后续处理
			if (al.get(i).get(0)<=j)
			{
				//加入物品i的情况,当前容量(j)减去i的容量即是前i-1种物品可使用的容量,容量下i-1种物品的价值+当前物品i的价值
				//与不加物品i的价值对比
			int temp=Math.max(c[index-1][j-al.get(i).get(0)]+al.get(i).get(1), c[index-1][j]);	
				c[index][j]=temp;			
			}
			else
			{
				c[index][j]=c[index-1][j];
			}			
		
		}	
	}	
	System.out.println(c[3][10]);
	
	}
}

2、题目:给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]k[1]…*k[m]可能的最大乘积是多少?例如,当绳子的长度为8时,我们把它剪成长度分别为2,3,3的三段,此时得到的最大乘积是18

int dp_cut_rope(int length)
{
	if (length < 2) return 0;
	if (length == 2) return 1;
	if (length == 3) return 2;

	//if lenght > 3, f(n)=max{f(i)*f(n-i)}
	vector<int> f(length, 0);
	//这些情况下,不剪的时候长度比剪的时候长,所以作为初始条件
	//这些都是子问题最优解,因为是子问题,所以这些情况可以不剪,因为可以看成它是分割后的一部分
	f[0] = 0;
	f[1] = 1;
	f[2] = 2;
	f[3] = 3;
	for (int i = 4; i <= length; ++i)
	{
		int max_val = 0;
		for (int j = 1; j <= length / 2; ++j)
			max_val = max(f[j] * f[i - j], max_val);
		f[i] = max_val;
	}
	return f[length];
}

参考:

http://blog.sina.com.cn/s/blog_6dcd26b301013810.html,算法原理讲的比较细致

https://blog.csdn.net/Gang_dada/article/details/85250891

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值