题意:奶牛学校招生,c头奶牛报名,要选n头(n为奇数),学校是义务制,所以每头奶牛的学费都由学校负责。每头奶牛都由自己的考试分数和它需要花的学费,学校总共有f的资金,问合法招生方案中中间分数(即排名第(n+1)/2)最高的是多少。
题解:先将所有的奶牛按照分数由高到低排序,假设k是招的奶牛中排名中间的那头,按照排序可知,[1,k-1]中的奶牛必定被招了(n-1)/2头,[k+1,c]中也必定被招了(n-1)/2头,而且无论招的是谁,分数是怎么样,最后影响结果的都只是k的分数。于是,可以预处理dpl[i]代表[1,i]头牛中选出(n-1)/2头牛的最小花费,dpr[i]代表[i,c]头牛中选出(n-1)/2头牛的花费,预处理方法可以用一个大顶堆,复杂度nlogn,最后枚举中间牛复杂度n。
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAXN=111111;
priority_queue<int> Q;
int dpl[MAXN];
int dpr[MAXN];
struct eg
{
int a,b;
}cow[MAXN];
bool cmp(const eg&a,const eg&b)
{
if(a.a!=b.a)
return a.a>b.a;
return a.b<b.b;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("G:/1.txt","r",stdin);
freopen("G:/2.txt","w",stdout);
#endif
int n,c,f;
scanf("%d%d%d",&n,&c,&f);
for(int i=1;i<=c;i++)
scanf("%d%d",&cow[i].a,&cow[i].b);
sort(cow+1,cow+c+1,cmp);
int nu=(n-1)/2;
int sum=0;
for(int i=1;i<=nu;i++)
{
Q.push(cow[i].b);
sum+=cow[i].b;
}
dpl[nu]=sum;
for(int i=nu+1;i<=c;i++)
{
if(cow[i].b>Q.top())
{
dpl[i]=sum;
}
else
{
sum=sum-Q.top()+cow[i].b;
Q.pop();
Q.push(cow[i].b);
dpl[i]=sum;
}
}
sum=0;
while(!Q.empty())
Q.pop();
for(int i=c;i>=c-nu+1;i--)
{
Q.push(cow[i].b);
sum+=cow[i].b;
}
dpr[c-nu+1]=sum;
for(int i=c-nu;i>=1;i--)
{
if(cow[i].b>Q.top())
{
dpr[i]=sum;
}
else
{
sum=sum-Q.top()+cow[i].b;
Q.pop();
Q.push(cow[i].b);
dpl[i]=sum;
}
}
bool flag=false;
for(int i=nu+1;i<=c-nu;i++)
{
if(cow[i].b+dpl[i-1]+dpr[i+1]<=f)
{
flag=true;
printf("%d\n",cow[i].a);
break;
}
}
if(!flag)
printf("-1\n");
}