八 种常用的数据库索引结构

本文讨论了在不同场景下如何选择数据库索引结构,如B树、哈希索引、跳表、SSTable、LSM树、后缀树、倒排索引和R树,强调了根据数据存储位置、数据格式、搜索需求和操作类型来优化性能的关键性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无论数据存储于磁盘还是内存,我们都需要有一种高效的数据结构来访问和获取数据。

那么我们应该选用哪一种索引结构呢?我们需要考虑如下几个因素:

  • 数据存储于内存还是磁盘?

  • 数据格式和结构是怎样的?是字符串,数字,还是地理坐标?

  • 搜索时是否需要精确匹配?是否需要容忍一定的输入错误?

  • 系统是读操作多还是写操作多?

我们来看看 8 种常用的数据库索引结构。

图片

  1. B 树

B 树/B+ 树作为最流行的数据库索引数据结构,是基于磁盘的解决方案,其读/写性能稳定。不同于传统的二叉树,B 树的单个节点中可以存储大量的键值,这样树的高度较低,可以加快搜索和插入元素的速度,减少磁盘的 I/O 操作。B 树的时间复杂度为 O(logN)。

  1. Hash Index(哈希索引)

Map 数据结构的常用实现。哈希值映射到存储桶,该存储桶存储数据的偏移值。这样我们可以根据键值很快地查找数据。

  1. Skiplist(跳表)

一种常见的内存索引类型,在 Redis SortedSet 中使用。跳表解决了链表搜索效率低下的问题。每个节点都包含几个前向指针,因此我们不被遍历过程中的步长所限制,可以跳过一些节点来加快搜索速度。

  1. SSTable(Sorted String Table)

SSTable 是 Apache Cassandra 和其他 NoSQL 数据库使用的一种持久性文件格式。它可以对 memtable 里的内存数据进行排序以便快速访问,并将其存储在磁盘上的持久有序、不可变的一组文件中。不可变意味着 SSTables 永远不会被修改。它们稍后会合并到新的 SSTables 中,或者随着数据的更新而被删除。SSTable 与 LSM Tree 一起使用。与 B 树相比,这种结构对于写入量大、快速增长的超大数据集效率更高

  1. LSM 树(Log-Structured Merge Tree)

LSM Tree 在 SSTable 的基础上提供一整套存储解决方案。它由两层结构组成:memtable (内存)和 SSTable(磁盘)。新数据先写入 memtable 中,如果 memtable 过大,那就会 flush 到磁盘的 SSTable 上。各个 SSTable 上会有重复的键值,在一段时间后会进行合并压缩。我们可以看到,每个写入请求实际上都只在内存中进行,所以 LSM Tree 的写入吞吐量明显高于 B Tree。

  1. Suffix Tree(后缀树)

后缀树通常用于存储字符串列表。它也被称为 Trie 的压缩版本。后缀树常用于字符串的搜索和匹配,比如容忍一定输入错误的字符搜索,正则表达式匹配,最长子串问题等。

  1. Inverted Index(倒排索引)

用于高效的文档索引,比如 Lucene。在倒排索引中,索引按单词进行组织,每个单词都指向包含该单词的文档列表。

  1. R 树

用于多维信息的搜索,包含地理坐标、矩形、多边形等。我们可以借助这种索引来搜索附近的餐馆,找到最近的加油站,检索附近所有路段等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值