问题描述:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
示例:
given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
问题分析:
一道动态规划问题,设dp为状态转移数组,dp[i]表示以第i个元素结尾时的路径和,dp[j] = min(dp[j],dp[j + 1]) + triangle[i][j].( i = n - 2,....,0, j = 0,..., i)。
过程详见代码:
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
vector<int> dp(n, 0);
for (int i = 0; i < n; i++)
dp[i] = triangle[n - 1][i];
for (int i = n - 2; i >= 0; i--)
{
for (int j = 0; j <= i; j++)
{
int left = dp[j] + triangle[i][j];
int right = dp[j + 1] + triangle[i][j];
dp[j] = left > right ? right : left;
}
}
return dp[0];
}
};
本文介绍了一种使用动态规划解决三角形最小路径和问题的方法。该问题要求从三角形顶部到底部找到路径总和最小的路线。通过逆向操作,自底向上更新状态转移数组dp,实现了高效求解。
1022

被折叠的 条评论
为什么被折叠?



