ELM极限学习机
文章平均质量分 94
介绍利用智能优化算法优化ELM
智能算法研学社(Jack旭)
博客代码,Matlab 代码请访问:https://mbd.pub/o/Jack python代码请访问:https://mbd.pub/o/JackYM
《智能优化算法及其matlab实现》,《Python智能优化算法:从原理到代码实现与应用》,《智能优化算法与MATLAB编程实践》书籍作者
展开
-
基于绯鲵鲣算法改进的随机森林回归算法
摘要:为了提高随机森林数据的回归预测准确率,对随机森林中的树木个数和最小叶子点数参数利用绯鲵鲣搜索算法进行优化。原创 2024-02-15 10:18:22 · 914 阅读 · 0 评论 -
基于郊狼算法改进的随机森林回归算法
摘要:为了提高随机森林数据的回归预测准确率,对随机森林中的树木个数和最小叶子点数参数利用郊狼搜索算法进行优化。原创 2024-02-15 10:17:42 · 962 阅读 · 0 评论 -
基于指数分布算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-14 10:14:30 · 903 阅读 · 0 评论 -
基于减法平均算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:31:44 · 969 阅读 · 0 评论 -
基于斑马算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:29:33 · 796 阅读 · 0 评论 -
基于袋獾算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:27:29 · 923 阅读 · 0 评论 -
基于鱼鹰算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:25:36 · 941 阅读 · 0 评论 -
基于驾驶训练算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:24:48 · 833 阅读 · 0 评论 -
基于浣熊算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:23:55 · 825 阅读 · 0 评论 -
基于厨师算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:22:58 · 862 阅读 · 0 评论 -
基于卷积优化算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:22:13 · 818 阅读 · 0 评论 -
基于人工兔算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:21:29 · 782 阅读 · 0 评论 -
基于协作搜索算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:20:49 · 911 阅读 · 0 评论 -
基于人工蜂鸟算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:19:45 · 1200 阅读 · 0 评论 -
基于蜣螂算法的极限学习机(ELM)回归预测-附代码
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2023-01-28 16:48:46 · 1287 阅读 · 1 评论 -
基于法医调查算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:18:24 · 749 阅读 · 0 评论 -
基于孔雀算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:17:42 · 868 阅读 · 0 评论 -
基于白鲸算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:17:01 · 813 阅读 · 0 评论 -
基于侏儒猫鼬算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-13 10:16:16 · 736 阅读 · 0 评论 -
基于沙猫群算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:13:37 · 849 阅读 · 0 评论 -
基于战争策略算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:12:50 · 1302 阅读 · 0 评论 -
基于广义正态分布算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:12:06 · 913 阅读 · 0 评论 -
基于食肉植物算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:11:23 · 809 阅读 · 0 评论 -
基于金豺算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:10:32 · 763 阅读 · 0 评论 -
基于鹈鹕算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:09:35 · 863 阅读 · 0 评论 -
基于北方苍鹰算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:08:51 · 1300 阅读 · 0 评论 -
基于蛇优化算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:08:05 · 900 阅读 · 0 评论 -
基于材料生成算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:07:01 · 896 阅读 · 0 评论 -
基于跳蛛算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:06:16 · 776 阅读 · 0 评论 -
基于向量加权平均算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:05:35 · 912 阅读 · 0 评论 -
基于金枪鱼群算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:04:55 · 989 阅读 · 0 评论 -
基于爬行动物算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:04:14 · 817 阅读 · 0 评论 -
基于原子轨道搜索算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:03:32 · 934 阅读 · 0 评论 -
基于天鹰算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-12 11:02:44 · 913 阅读 · 0 评论 -
基于猎食者算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-11 13:09:54 · 832 阅读 · 0 评论 -
基于鹰栖息算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-11 13:09:15 · 823 阅读 · 0 评论 -
基于卷尾猴算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-11 13:08:43 · 934 阅读 · 0 评论 -
基于人工大猩猩部队算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-11 13:08:04 · 874 阅读 · 0 评论 -
基于晶体结构算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-11 13:07:24 · 834 阅读 · 0 评论 -
基于变色龙算法的极限学习机(ELM)回归预测
典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量。原创 2024-02-11 13:06:44 · 857 阅读 · 0 评论
分享