[已解决] AI2THOR-2.1.0的卡死问题 在使用一些数据集的时候,例如ALFRED,需要调用AI2THOR-2.1.0版本。在不特别指定其他库的版本的情况下,程序会在step函数里面卡在queue_get(self.request_queue)这一步。
【小样本学习】【CVPR2021】补全原型网络达到SOTA,Prototype Completion with Primitive Knowledge for Few-Shot Learning 小样本学习是一种通过少量样本训练分类器的方法,目前是一项比较困难的任务。目前比较有效的方法是基于元学习的预训练方法,首先在样本比较丰富的基础类别上训练一个特征提取器,然后在样本比较少的新类别上进行微调。然而实验表明微调对网络在新类别上的分类准确率的改进比较有限,本文发现,在用于预训练的基础类别数据集中,每个类别中样本的分布都比较紧凑,不同类别之间泾渭分明,而在样本比较少的新类别数据集中,各个类别中的样本分布比较混乱,不同类别的样本混在一起,不容易分开,即方差比较大。针对上述问题,该文对所有类别的名称进
【论文阅读】【逐字翻译】 爱丁堡大学IEEE TPAMI 2021年最新元学习综述 《Meta-Learning in Neural Networks: A Survey》 近年来,元学习,或者说学会学习获得了广泛关注。传统人工智能技术利用固定的学习算法从零开始进行学习,不同的是,给定多个学习过程所学知识后,元学习的目的在于改进算法本身。元学习能够更好处理传统深度学习面临的问题,例如数据和计算瓶颈、泛化能力等。本综述描述当前元学习领域的进展。首先,给出元学习的定义,介绍其在迁移学习和超参数优化等相关领域的进展,其次,给出一种新分类方式,更准确地对当前元学习方法进行划分。然后,给出元学习在少样本学习和强化学习等领域的前景和成功之处。最后,讨论元学习的主要困难和未来前景。
【Matlab】【模糊聚类】【图像分割】KWFLICM算法及其代码 KWFLICM算法介绍内容后面更,先给出代码代码,GPU版本,速度快%基于局部信息与核方法的FCM图像分割算法 KWFLICM%Fuzzy C-Means Clustering With Local Information and Kernel Metric for Image Segmentation%IEEE Transactions on Image Processing 22(2) (2013) 573-584clear all;close all;format long%% 指定
【C++】【Intel MKL】【OpenMP】【模糊聚类】多线程英特尔MKL实战 - 模糊C均值图像分割 1、英特尔MKL面对计算量庞大的线性代数计算,英特尔为其CPU开发了MKL(Math Kernel Library)。Intel MKL能够充分利用CPU指令集和并行计算优势,较大提高矩阵计算速度。具体参考:https://software.intel.com/content/www/us/en/develop/articles/intel-math-kernel-library-documentation.html2、概述本实验采用英特尔MKL与OpenMP完成模糊C均值图像分割。Intel MK
【C++】【图像分割】【模糊聚类】FLICM算法C++实现,OpenCV负责图像读取与显示 S. Krinidis, V. Chatzis. A Robust Fuzzy Local Information C-Means Clustering Algorithm[J]. IEEE Transactions on Image Processing, 19(5), 2010: 1328-1337.该算法推导有误,使目标函数无法最小化。正确的推导请参考:T. Celik, H. K. Lee. Comments on “A Robust Fuzzy Local Information C-Mea
【图像处理】【Matlab】双边滤波Matlab代码(速度很快) 网上的介绍太多了,但绝大多数Matlab代码应用了较多的循环,速度较慢。本代码充分应用矩阵运算,循环次数少,速度极快。归一化到0到1之间以后,加入零均值,标准差为0.01的高斯白噪声,得到下图设置σs=5,σr=0.2\sigma_s=5,\sigma_r=0.2σs=5,σr=0.2,邻域边长k=9,k=9,k=9,得到滤波效果笔记本CPU为i7-4710HQ,0.1秒,速度很快代码:clear allclose allf = imread('滤波原始图.jpg');[row,
除了按照其它博客所述调整Visual Studio的设置,CUDA调试还必须注意的三点 Nsight诸版本下载,下载前请仔细阅读DocumentationDocumentation中的“System Requirements for NVIDIA Nsight VSE Software”一节极其重要,请仔细阅读,尤其注意以下两点1、对显示驱动的版本要求,安装与显示驱动版本最相近的Nsight。例如,若安装了451.67版本的驱动,那么选择Nsight 2020.1最为合适。若某一台电脑,安装了CUDA 10.1自带的Nsight 2019.3,并手动更新到451.67版本的驱动,由于Ns
Visual Studio 2019 永久解决任意工具包的包含目录、库目录、库文件的方法 在使用VS2019时,每次创建新项目需要重新配置包含目录(Include目录)、库目录(lib文件所在目录)和库文件,十分麻烦。例如配置OpenCV、CUDA的VS环境。这里给出一种一劳永逸的方法。细心的朋友可能会发现,VS2019与2017不同点在于,在每个项目的属性管理器页面中:Debug | Win32和Release | Win32下缺少Microsoft.Cpp.Win32.user,Debug | Win64和Release | Win64下缺少Microsoft.Cpp.x64.user,
【Matlab】【机器学习】SVM快速算法 - SMO(序列最小优化)从推理到实现 支持向量机(SVM)https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf支持向量机(support vector machines, SVM)是一种监督二分类模型,具有完善的数学理论,其目标函数具有良好的凸性,可直接运用凸优化方法一次性找到最佳分类边界。设Kij=K(xi,xj)K_{ij}=K(x_i,x_j)Kij=K(xi,xj)是数据向量xix_ixi和xjx_jxj的内积,可
【数字信号处理】【傅里叶分析】【FFT】快速傅里叶变换的完整公式推导 给出离散傅里叶变换DFT的公式:DFT[x(n)]=X(m)=∑n=0N−1x(n)exp(−j2πmnN),m∈[0,N−1]=x(0)exp(−j2πm0N)+x(1)exp(−j2πm1N)+x(2)exp(−j2πm2N)+x(3)exp(−j2πm3N)+...\begin{aligned}DFT[x(n)]=X(m)&=\sum_{n=0}^{N-1}x(n)exp(-j\frac{2\pi mn}{N}),m\in[0,N-1]\\&=x(0)exp(-j\frac{2\
【图像分割】【FCM】【经典文献解读】基于隐Markov随机场模型的增强型空间约束FCM图像分割 HMRF-FCM 以下算法均按照时间顺序排序1、基于隐Markov随机场模型的增强型空间约束FCM图像分割算法 HMRF-FCMChatzis S. P., Varvarigou T. A. A Fuzzy Clustering Approach Toward Hidden Markov Random Field Models for Enhanced Spatially Constrained Image S...
【Python 3.6】任意深度BP神经网络综合练习(非卷积网络),根据斯坦福cs231n课程编写 CIFAR10数据库CIFAR10是一套含有60000张大小为32×32彩色RGB图像的10分类图像数据库,其中的50000张图像为训练数据,10000张图像为测试数据,另外验证集的数据从训练集中取出。隐含层使用的激活函数:ReLU函数输出层使用的损失函数:Softmax函数训练集数据特征数量(即维度):32×32×3,3表示有RGB三个色彩通道。训练集数据量:1000个验证集数据量:...