LeetCode - Medium - 77. Combinations

Topic

  • Backtracking

Description

https://leetcode.com/problems/combinations/

Given two integers n and k, return all possible combinations of k numbers out of 1 ... n.

You may return the answer in any order.

Example 1:

Input: n = 4, k = 2
Output:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

Example 2:

Input: n = 1, k = 1
Output: [[1]]

Constraints:

  • 1 <= n <= 20
  • 1 <= k <= n

Analysis

初次尝试

直接的想法解法是使用for循环。示例一中n为4,k为2,很容易想到用两个for循环,这样就可以输出和示例中一样的结果,代码如下:

int n = 4;
for (int i = 1; i <= n; i++) {
    for (int j = i + 1; j <= n; j++) {
        System.out.println(i + " " + j);
    }
}

输入:n = 100, k = 3 那么就三层for循环,代码如下:

int n = 100;
for (int i = 1; i <= n; i++) {
    for (int j = i + 1; j <= n; j++) {
        for (int k = j + 1; k <= n; n++) {
            System.out.println(i + " " + j + " " + k);
        }
    }
}

如果n为100,k为50呢,那就编写50层for循环,显然这是不可取的。

主角登场

回溯搜索法来了,虽然回溯法也是暴力,但至少能写出来,不像for循环嵌套k层让人绝望。

要解决 n为100,k为50的情况,暴力写法需要嵌套50层for循环,那么回溯法就用递归来解决嵌套层数的问题

递归来做层叠嵌套(可以理解是开k层for循环),每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题了

回到上面的例子,k为50的情况下,就是递归50层。

概论谈论到,回溯法解决的问题都可以抽象为树形结构,用树形结构可方便我们理解回溯:

可以看出这个棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不在重复取。

第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围

图中可以发现n相当于树的宽度,k相当于树的深度

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果。相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

回溯三弄

函数签名

参数变量如下:

  • List<Integer> path:用来存放符合条件单一结果。
  • List<List<Integer>> result:用来存放符合条件结果的集合。
  • int numRange:对应题目中的n。
  • int expectedSize:对应题目中的k。
  • int startIndex:用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,…,n] )。

为什么要有这个startIndex呢?

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠startIndex

从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。

最后,函数签名如下:

private void backtracking(List<Integer> path, int numRange, int expectedSize, 
                          int startIndex, List<List<Integer>> result){}
终止条件

什么时候到达所谓的叶子节点了呢?

path这个列表大小如果达到expectedSize,说明我们找到了一个子集大小为expectedSize的组合了,在图中path存的就是根节点到叶子节点的路径。如下图红色部分:

此时用result把path保存起来,并终止本层递归。

终止条件代码如下:

if (path.size() == expectedSize) {
    result.add(new ArrayList<>(path));
    return;
}
遍历过程

回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。

如此我们才遍历完图中的这棵树。

for循环每次从startIndex开始遍历,然后用path保存取到的节点i。代码如下:

for (int i = startIndex; i <= numRange; i++) {
    path.add(i);
    backtracking(path, numRange, expectedSize, i + 1, result);
    path.remove(path.size() - 1);
}

可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。

backtracking的下面部分就是回溯的操作了,撤销本次处理的结果,为了下一回循环。

小结

最终代码如下:

import java.util.ArrayList;
import java.util.List;

public class Combinations {
	public List<List<Integer>> combine1(int numRange, int expectedSize) {
		List<List<Integer>> result = new ArrayList<>();
		List<Integer> path = new ArrayList<>();
		backtracking(path, numRange, expectedSize, 1, result);
		return result;
	}

	private void backtracking(List<Integer> path, int numRange, int expectedSize, int startIndex,
			List<List<Integer>> result) {
		if (path.size() == expectedSize) {
			result.add(new ArrayList<>(path));
			return;
		}

		for (int i = startIndex; i <= numRange; i++) {
			path.add(i);
			backtracking(path, numRange, expectedSize, i + 1, result);
			path.remove(path.size() - 1);
		}
	}
}

概论谈论到回溯模板:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

对比一下本题的代码,神同形似。有了这个模板,就有解题的大体方向,不至于六神无主。

剪枝优化

回溯法虽然是暴力搜索,但有时可以剪枝优化一下。

遍历的代码如下:

for (int i = startIndex; i <= numRange; i++) {
    path.add(i);
    backtracking(path, numRange, expectedSize, i + 1, result);
    path.remove(path.size() - 1);
}

这个遍历的范围是可以剪枝优化的,怎么优化呢?

举一个例子,当n = 4,k = 4,那么第一层for循环的时候,从元素2开始的遍历都没有意义了(最多3个,永远凑不够4个)。在第二层for循环,从元素3开始的遍历都没有意义了(最多2个,永远凑不够3个),以此类推。

如图所示:

图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。

所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了

注意代码中i,就是for循环里选择的起始位置。

for (int i = startIndex; i <= n; i++) {

优化过程如下:

  1. 已经选择的元素个数:path.size();
  2. 还需要的元素个数为:k - path.size();
  3. 在集合n中至多要从该起始位置:n - (k - path.size()) + 1,开始遍历。为什么有个+1呢?因为包括起始位置,我们要是一个左闭的集合。

s = n − ( k − p a t h . s i z e ( ) ) + 1 = n − k + 1 + p a t h . s i z e ( ) s = n - (k - path.size()) + 1 = n - k + 1 + path.size() s=n(kpath.size())+1=nk+1+path.size(),式子中的n,k在传参到回溯函数后是固定大小的,那么随着path.size()增大,s减小。

我们举实例说明下,为什么有个+1呢?

举个例子,n = 4,k = 3, 目前已经选取的元素个数为0(path.size为0),n - (k - 0) + 1 = 4 - ( 3 - 0) + 1 = 2。从1或2开始搜索是合理的,可以是组合[1, 2, 3],[2, 3, 4]。

再举个例子,n = 4,k = 4, 目前已经选取的元素个数为0(path.size为0),n - (k - 0) + 1 = 4 - ( 4 - 0) + 1 = 1。从1开始搜索是合理的,可以是组合[1, 2, 3, 4]。

优化之后的for循环是:

for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置

优化后整体代码如下:

import java.util.ArrayList;
import java.util.List;

public class Combinations {

	// 剪枝优化后的
	public List<List<Integer>> combine2(int numRange, int expectedSize) {
		List<List<Integer>> result = new ArrayList<>();
		List<Integer> path = new ArrayList<>();
		backtracking2(path, numRange, expectedSize, 1, result);
		return result;
	}

	private void backtracking2(List<Integer> path, int numRange, int expectedSize, int startIndex,
			List<List<Integer>> result) {
		if (path.size() == expectedSize) {
			result.add(new ArrayList<>(path));
			return;
		}

		for (int i = startIndex; i <= numRange - (expectedSize - path.size()) + 1; i++) {
			path.add(i);
			backtracking(path, numRange, expectedSize, i + 1, result);
			path.remove(path.size() - 1);
		}
	}
}

参考资料

回溯算法:求组合问题!

回溯算法:组合问题再剪剪枝

Submission

import java.util.ArrayList;
import java.util.List;

public class Combinations {
	public List<List<Integer>> combine1(int numRange, int expectedSize) {
		List<List<Integer>> result = new ArrayList<>();
		List<Integer> path = new ArrayList<>();
		backtracking(path, numRange, expectedSize, 1, result);
		return result;
	}

	private void backtracking(List<Integer> path, int numRange, int expectedSize, int startIndex,
			List<List<Integer>> result) {
		if (path.size() == expectedSize) {
			result.add(new ArrayList<>(path));
			return;
		}

		for (int i = startIndex; i <= numRange; i++) {
			path.add(i);
			backtracking(path, numRange, expectedSize, i + 1, result);
			path.remove(path.size() - 1);
		}
	}

	// 剪枝优化后的
	public List<List<Integer>> combine2(int numRange, int expectedSize) {
		List<List<Integer>> result = new ArrayList<>();
		List<Integer> path = new ArrayList<>();
		backtracking2(path, numRange, expectedSize, 1, result);
		return result;
	}

	private void backtracking2(List<Integer> path, int numRange, int expectedSize, int startIndex,
			List<List<Integer>> result) {
		if (path.size() == expectedSize) {
			result.add(new ArrayList<>(path));
			return;
		}

		for (int i = startIndex; i <= numRange - (expectedSize - path.size()) + 1; i++) {
			path.add(i);
			backtracking(path, numRange, expectedSize, i + 1, result);
			path.remove(path.size() - 1);
		}
	}
}

Test

import static org.hamcrest.collection.IsIterableContainingInAnyOrder.containsInAnyOrder;
import static org.junit.Assert.*;

import java.util.Arrays;

import org.junit.Test;

public class CombinationsTest {

	@Test
	@SuppressWarnings("unchecked")
	public void test1() {
		Combinations obj = new Combinations();

		Object[] expected = {Arrays.asList(2,4),
				Arrays.asList(3,4),
				Arrays.asList(2,3),
				Arrays.asList(1,2),
				Arrays.asList(1,3),
				Arrays.asList(1,4)};
		
		assertThat(obj.combine1(4, 2), containsInAnyOrder(expected));
		assertThat(obj.combine1(1, 1), containsInAnyOrder(Arrays.asList(1)));
		assertThat(obj.combine1(4, 4), containsInAnyOrder(Arrays.asList(1, 2, 3, 4)));
		assertThat(obj.combine1(4, 3), containsInAnyOrder(Arrays.asList(1, 2, 3), Arrays.asList(1, 3, 4),//
				Arrays.asList(1, 2, 4), Arrays.asList(2, 3, 4)));
	}
	
	@Test
	@SuppressWarnings("unchecked")
	public void test2() {
		Combinations obj = new Combinations();
		
		Object[] expected = {Arrays.asList(2,4),
				Arrays.asList(3,4),
				Arrays.asList(2,3),
				Arrays.asList(1,2),
				Arrays.asList(1,3),
				Arrays.asList(1, 4) };

		assertThat(obj.combine2(4, 2), containsInAnyOrder(expected));
		assertThat(obj.combine2(1, 1), containsInAnyOrder(Arrays.asList(1)));
		assertThat(obj.combine2(4, 4), containsInAnyOrder(Arrays.asList(1, 2, 3, 4)));
		assertThat(obj.combine2(4, 3), containsInAnyOrder(Arrays.asList(1, 2, 3), Arrays.asList(1, 3, 4), //
				Arrays.asList(1, 2, 4), Arrays.asList(2, 3, 4)));
	}
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值