免费、开源!快手可图Kolors,一款会写汉字、最懂中文的文生图大模型!

大家好,我是程序员X小鹿,前互联网大厂程序员,自由职业2年+,也一名 AIGC 爱好者,持续分享更多前沿的「AI 工具」和「AI副业玩法」,欢迎一起交流~

前段时间分享了一款 AI 绘画工具,深受大家喜爱。甚至几年都没联系的前同事,都发消息问我,这个 AI 工具是啥?

在这里插入图片描述

像上面这组图,就是用这个 AI 绘画工具画的。

比如一些职场吐槽、职场反内卷的插画,还是非常容易引起打工人的共鸣的。

用来做自媒体账号、发朋友圈、做文章插图,都可以!比如X小鹿就经常用它来生成文章插图。

之前问的人太多,回复不过来了,就放公众号了,需要的话发送【插图】自取吧~

但是这个 AI 工具有一定免费额度,免费体验次数用完了,就需要付费了。

有网友就问,有免费的吗?

当然有呀!

免费的就用奇域AI呗。每天签到可领 100 积分,每天可画 100 张。大部分用户绝对够画了。

但是要画出一样的效果,需要自己调提示词。出图后,还需要自己把文字 P 上去。

除了奇域AI,如果会 Stable Diffusion,本地部署出图,也是免费的。而且我见有网友在 LibLib 上发了相关 Lora,可以跑跑试试看。

但依然需要后期自己把文字 P 上去。

因为很多 AI 绘画工具,是不支持图片上出文字的,比如像下面这个:

提示词:一只柯基狗的侧面,头顶上方写着“你瞅啥”。

发现它完全不理解。

在这里插入图片描述

虽然已经有一些工具目前是支持文本输出的,但对于汉字的输出,可控性并不是很高。

前几天在 WAIC 2024 的大会上,快手公布了「可灵 AI」的 Web 端平台以及最新功能。

快手可灵的 AI 视频,备受大家喜爱,不仅国内出圈了,还火到了国外,估计快手自己也是没有料到。

但,大家是不是太宠幸「可灵」AI 视频了,而忘了还有「可图」 AI 绘画。

快手可图大模型(Kolors),是快手大模型团队研发的图像生成大模型,也是行业顶尖的图像生成大模型。

在 WAIC 大会上,快手团队称:

可图大模型(Kolors)是最懂中文的文生图模型!综合指标超过 SDXL / SD3 等开源模型和 Midjourney 等闭源模型。

目前可图(Kolors)完全开源,而且 ComfyUI 插件也出了。

开源地址:

https://github.com/Kwai-Kolors/Kolors

但如果不懂技术也没有关系,可以直接在「可灵AI」官网体验。

https://klingai.kuaishou.com/

在这里插入图片描述

快手的可图(Kolors),能够很好地理解中文语义,并且可以直接生成汉字!

比如像刚刚出图失败的文字「你瞅啥」,这里用可图再试一下:

在这里插入图片描述

发现汉字出得还不赖!

在这里插入图片描述

又试了几个 Case,还不错:

在这里插入图片描述

在这里插入图片描述

不过有时候也会出汉字失败,尤其是文字比较长的时候。像下面这张。

想让一只小猫咪说「你瞅啥」,另一只说「瞅你咋滴」。但这貌似对可图来说,有些困难。

呃,你俩这是说了个啥…

在这里插入图片描述

但不管怎么说,已经比之前的文生图大模型有了很大进步。

快手的可图,不仅会写汉字,而且

1、支持多种风格的绘画。

2、也支持垫图。

3、最多可一次出 9 张图。

4、速度还贼快,差不多 10 多秒就能出图。

而且现在是完全免费!

后续是否收费或是否也会采用积分制,就看官方了,但至少目前可「免费无限出图」!

感兴趣的快去玩一下吧~

结束语

之前在知乎上看到一个提问,说可灵大模型是否已经超越美国了。

我觉得不敢说是否已经超过了,但肯定已经跻身世界前列了!而且在其他 AI 领域的差距也在慢慢缩小。

相信国产大模型一定会更加出色。一起期待一下~


觉得文章有帮助,请帮忙点赞收藏关注一下呦~

我是程序员X小鹿,前互联网大厂程序员,自由职业2年+,也是一名 AIGC 爱好者,欢迎一起交流~

AI及副业资料,关注下方公众号,回复【资料】领取。

在这里插入图片描述

### Kolors-LoRA 模型调用方法 Kolors-LoRA 模型作为一种基于 LoRA 技术的扩展应用,主要用于在 Stable Diffusion 或其他类似的文本到像生成框架中实现风格迁移或个性化定制。以下是关于如何调用 Kolors-LoRA 模型的方法: #### 1. 准备环境 为了成功加载和运行 Kolors-LoRA 模型,需要确保安装并配置好支持 LoRA 的深度学习框架以及相关依赖库。通常情况下,这包括但不限于 PyTorch 和 Transformers 库。 ```bash pip install torch transformers accelerate diffusers ``` 上述命令会帮助设置必要的 Python 环境以处理模型文件[^3]。 #### 2. 下载预训练模型 获取官方发布的 Kolors 基础模型及其对应的 LoRA 权重文件(通常是 `.pt` 或 `.bin` 文件)。这些权重文件包含了针对不同艺术风格(如水墨画、水彩画等)所调整的参数集合[^4]。 #### 3. 加载基础模型与LoRA模块 利用编程接口来组合主干网络同附加上的LoRA组件一起工作。下面给出了一段Python脚本作为示范用途展示怎样完成这项操作: ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch # 定义设备类型 (GPU优先) device = "cuda" if torch.cuda.is_available() else "cpu" # 初始化Stable Diffusion管道对象 model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device) # 替换默认调度器为更高效的版本 pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) # 将LoRA权重融入现有pipeline之中 lora_path = "./path_to_lora_weight_file.pt" pipe.unet.load_attn_procs(lora_path) def generate_image(prompt): image = pipe(prompt=prompt).images[0] return image # 测试生成片功能 test_prompt = "A beautiful landscape painting with cyberpunk elements." output_img = generate_image(test_prompt) output_img.save("generated_artwork.png") ``` 此代码片段展示了如何将预先下载下来的LoRA权重集成进入标准版Stable Diffusion流水线里去,并执行简单的文字转形任务过程[^1]。 #### 4. 自定义样式转换 如果希望进一步探索更多独特视觉效果,则可以通过调节超参或者尝试混合多个不同的LoRA插件达成目标。例如,在同一个项目里面同时加载两个甚至更多的独立LoRA实例从而创造出前所未有的复合美学特征[^2]。 --- ### 注意事项 当实际部署过程中遇到任何异常状况时,请仔细核查以下几个方面可能存在的问题: - **硬件资源不足**: 如果显存容量不足以支撑整个推理流程顺利开展的话,那么就极有可能触发OOM错误; - **路径指向失误**: 对于本地存储位置设定不当时也会引发找不到对应数据集之类的情况发生; - **兼容性冲突**: 不同版本间的差异有时会造成某些特性无法正常使用等问题出现。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员X小鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值