- 博客(486)
- 收藏
- 关注
原创 <span class=“js_title_inner“>OpenAI 前首席研究官:AGI 核心突破已实现</span>
归根结底,与人合作时要理解他们的诉求,既要让他们实现创作目标,又要协调所有人的贡献形成整体成果,并持续反复地解决这个问题。但如果他们知道你是在为他们争取最大利益,那么当你要求他们去做那件极其困难且令他们恐惧的事情时,有时你就能帮助他们跨越鸿沟,解决问题,避免他们做出愚蠢的举动,最终获得圆满的结果。,包括在实现方式上的品味,其中可能存在不明显的后果——也许是性能上的隐性影响,也许是用户界面演变过程中难以预见的连锁反应,进而需要改变系统更深层的抽象结构——这些只能依靠人类来完成,目前别无选择。
2025-07-31 08:05:06
644
原创 <span class=“js_title_inner“>OpenAI 前首席研究官:AGI 核心突破已实现</span>
归根结底,与人合作时要理解他们的诉求,既要让他们实现创作目标,又要协调所有人的贡献形成整体成果,并持续反复地解决这个问题。但如果他们知道你是在为他们争取最大利益,那么当你要求他们去做那件极其困难且令他们恐惧的事情时,有时你就能帮助他们跨越鸿沟,解决问题,避免他们做出愚蠢的举动,最终获得圆满的结果。,包括在实现方式上的品味,其中可能存在不明显的后果——也许是性能上的隐性影响,也许是用户界面演变过程中难以预见的连锁反应,进而需要改变系统更深层的抽象结构——这些只能依靠人类来完成,目前别无选择。
2025-07-31 08:05:06
317
原创 <span class=“js_title_inner“>LLM 推理经济学</span>
作者 | Piotr Mazurek & Felix GabrielOneFlow 编译翻译|张雪聃题图由 SiliconCloud 生成当前 LLM 公司的主要商业模式是通过 API 提供模型访问服务,推理成本结构是决定其盈利能力的关键。本文将从底层原理阐释大模型托管/服务的成本来源、单个 GPU 可生成的词元(Token)数量及其成因,本文以开源模型 LLaMA 3.3 为基础,搭建一个简化版的大模型推理运算世界模型,旨在建立关于 LLM 推理的精确直觉认知。大模型推理的经济学影响远超过技术范畴本身。随
2025-05-25 16:05:34
383
转载 Databricks“三级跳”:600 亿美元独角兽的战略跃迁
本文以 S 曲线理论为分析框架,深度解构 Databricks 的三次关键战略跃迁,还原了其技术商业化路径中的关键决策——如拒绝本地化部署的短期利益、与微软 Azure 的生态合作以及从开源社区到企业级服务的平衡艺术。Databricks 作为数据与 AI 领域的代表性企业,从开源项目 Spark 起步,逐步发展为估值超 600 亿美元的行业巨头,其成长历程不仅折射出大数据技术的演进史,更揭示了科技公司如何通过连续的战略跃迁实现指数级增长。当时的背景是:互联网的迅速发展催生了海量数据,尤其是非结构化数据。
2025-04-26 09:28:32
1078
原创 AI 云服务之争:CoreWeave 向上,Nebius 向下
平台中的大多数工具均为自主研发,包括支持大规模调度的托管 Kubernetes、基于 Slurm 的集群调度系统、用于实验管理的 MLflow、自研的可观测性工具,以及一个具备安全保障的云端基础设施控制平台。它跳过了这一环节,设计了自己的服务器机架,以建立一个更加垂直整合的系统,从数据中心架构到托管式 Kubernetes 服务,再到像 Nebius AI Studio 这样的应用层工具(该工具为 DeepSeek、Llama 和 Flux 这样的开源模型提供推理 API)。的策略更全面和“全栈”。
2025-04-20 10:33:57
1845
转载 <span class=“js_title_inner“>AI 云服务之争:CoreWeave 向上,Nebius 向下</span>
平台中的大多数工具均为自主研发,包括支持大规模调度的托管 Kubernetes、基于 Slurm 的集群调度系统、用于实验管理的 MLflow、自研的可观测性工具,以及一个具备安全保障的云端基础设施控制平台。它跳过了这一环节,设计了自己的服务器机架,以建立一个更加垂直整合的系统,从数据中心架构到托管式 Kubernetes 服务,再到像 Nebius AI Studio 这样的应用层工具(该工具为 DeepSeek、Llama 和 Flux 这样的开源模型提供推理 API)。的策略更全面和“全栈”。
2025-04-20 10:33:57
19
转载 关于 DeepSeek-R1 API 评测,至少有 7 个误区
xx 58.33%。以某评测者的“人类头发数量的乘积是多少?市面上基本不存在“非满血版 R1”,也基本不存在所谓模型“降智”,而 R1 蒸馏版(70B、1.5B等)与满血版的效果差距很明显,一般知名服务商都会注明,如果这些平台提供所谓“非满血版 R1”,很容易测试出来,这完全是自砸招牌,他们没有动机“以次充好”。可以确定的是,市面上知名的第三方平台部署的都是“满血版 R1(671B)”,之所以用户使用感受有差异,是因为模型输出的随机性、平台提供的配套功能及超参数设置等可能不一致,而非底层模型本身的差异。
2025-03-21 11:45:39
981
转载 <span class=“js_title_inner“>关于 DeepSeek-R1 API 评测,至少有 7 个误区</span>
xx 58.33%。以某评测者的“人类头发数量的乘积是多少?市面上基本不存在“非满血版 R1”,也基本不存在所谓模型“降智”,而 R1 蒸馏版(70B、1.5B等)与满血版的效果差距很明显,一般知名服务商都会注明,如果这些平台提供所谓“非满血版 R1”,很容易测试出来,这完全是自砸招牌,他们没有动机“以次充好”。可以确定的是,市面上知名的第三方平台部署的都是“满血版 R1(671B)”,之所以用户使用感受有差异,是因为模型输出的随机性、平台提供的配套功能及超参数设置等可能不一致,而非底层模型本身的差异。
2025-03-21 11:45:39
15
转载 首发!硅基流动 x 华为云联合推出基于昇腾云的 DeepSeek R1 & V3 推理服务
DeepSeek-R1、DeepSeek-V3 开源后引发全球震动,它们是深度求索团队为全人类献上的一份大礼,我们由衷为他们取得的成功感到高兴。经过硅基流动和华为云团队连日攻坚,今天,我们也为国内用户献上春节礼物:大模型云服务平台 SiliconCloud 首发上线基于华为云昇腾云服务的 DeepSeek-V3、DeepSeek-R1。 需要特别强调的是,无论是在昇腾上适配 DeepSeek-R...
2025-02-01 17:53:28
3948
转载 <span class=“js_title_inner“>首发!硅基流动 x 华为云联合推出基于昇腾云的 DeepSeek R1 &; V3 推理服务</span>
5. 与 DeepSeek 官方优惠期价格保持一致,SiliconCloud 上的 DeepSeek-V3 的优惠期价格(截止 2 月 8 日 24:00)为 ¥1 / M tokens(输入)& ¥2 / M tokens (输出),DeepSeek-R1 的价格为 ¥4 / M tokens(输入)& ¥16 / M tokens (输出)。华为云昇腾云服务可提供澎湃、弹性、充足的算力。双模型,还是在此前上线其他模型的过程中,我们都得到了 DeepSeek 与华为云的大力支持,向他们致以深深的谢意与。
2025-02-01 17:53:28
11
转载 站在 AI 十字路口:直面智能体与机器人狂潮
生成式 AI 正在迅速介入人类世界。随着 AI 大模型不断进步,我们正面临着巨大的社会变革。本文探讨了一个由高度智能的智能体和机器人主导的世界——AI 亚特兰蒂斯世界(指在数字领域拥有几乎无限的 AI 资源)。本文分析了当前的 AI 模型为何从根本上不同于以往的技术范式,它们如何重塑各行业,以及人类面临的关键选择。作者认为,每个人都必须理解 AI 的进步将如何重塑经济、创造力和人类潜力的规则。除...
2025-01-27 10:05:04
499
转载 <span class=“js_title_inner“>站在 AI 十字路口:直面智能体与机器人狂潮</span>
拥有 AI 的政府能够提供更好的服务,制定数据驱动的政策,增强国家安全,并为民众提供更高的透明度和问责制。这里有一个令人难以置信的想法:你现在可以雇佣智能体员工和机器人工作者,他们的薪水甚至低于你花在咖啡上的费用——然而他们却拥有与普通大学毕业生相同的技能。拥有更多的闲暇时间当然不错,但真正的关键是,AI 为你腾出了精神空间,让你能专注于更大的挑战。像 ComfyUI 这样的工具是这一转变的早期例子——人们现在可以创建复杂的 AI 工作流,其中信息和任务从一个阶段无缝流向另一个阶段。这些模型是通用翻译器。
2025-01-27 10:05:04
16
转载 迈向 AI 驱动型经济:当资本不需要打工人
AI 的迅猛发展与普及,引发了学术界与工业界对现在的社会结构与经济模型的根本性反思。此前 OneFlow 发布的《资本、AGI 与人类雄心》、《AGI 时代的智能诅咒》、《AGI 崛起之后:重构经济模式与社会结构》三篇文章,深入探讨了劳动力替代性 AI 改变人力与非人力生产要素的相对重要性后,给整个社会带来的好处与风险,以及应对挑战的解决方案。在本文中,借助一众经济学家和科幻作家的理论观点,Int...
2025-01-24 16:04:00
848
转载 <span class=“js_title_inner“>迈向 AI 驱动型经济:当资本不需要打工人</span>
相对而言,伊恩·M·班克斯(https://en.wikipedia.org/wiki/Iain_Banks)的《文明》系列丛书则描绘了一个后匮乏的社会,在这个社会中,拥有感知能力的 “AI 智能体(AI Minds)” 管理着星舰和栖息地,根据需求分配资源,而非货币。例如,《星际迷航》中,技术(如复制器和先进的星舰 AI )消除了物质匮乏,推动了一个专注于探索和文化发展的社会。而 AI 的引入,使非人类智能体成为生产力的主要推动者,将剩余价值的核心转移到了算法、数据集和计算系统的所有权上。
2025-01-24 16:04:00
14
转载 AGI 崛起之后:重构经济模式与社会结构
AGI 日益临近,这也迫使我们重新审视现有的社会结构和经济模式。在《资本、AGI 与人类雄心》一文中,Rudolf 指出,AGI 到来之后,劳动力替代性 AI 将改变人力与非人力生产要素的相对重要性,这会降低社会对人类的关注度,同时使现有的权力更加有效和根深蒂固。基于资源诅咒现象,Luke Drago 在《AGI 时代的智能诅咒》一文中将 Rudolf 的上述核心观点描述为智能诅咒。他认为,智能诅...
2025-01-23 10:04:12
1111
转载 AGI 时代的智能诅咒
经济学研究指出,依赖出售石油等自然资源获得收入而非公民税收的国家,会受到资源诅咒的影响,结果是权贵们攫取了大量财富,却停止了对普通人的投资。当 AGI 实现后,人类是否会面临类似的“智能诅咒”?在此前发布的《资本、AGI 与人类雄心》一文中,Rudolf 指出,AGI 到来之后,劳动力替代性 AI 将改变人力与非人力生产要素的相对重要性,这会降低社会对人类的关注度,同时使现有的权力更加有效和根深蒂...
2025-01-19 13:35:55
598
转载 资本、AGI 与人类雄心
通用人工智能(AGI)正在不可阻挡地走向人类社会,有人期待它带来的巨大生产力突破,有人也在警告它可能成为洪水猛兽,也有人对它的发展只是持观望态度。不管怎样,基于你所了解的信息,你可以尝试描绘一幅 AGI 图景,并畅想它在人类政治、经济、社会发展会产生的影响。在本文中,作者 Rudolf 深入剖析了 AGI 到来之后的资本、人类劳动与社会权力结构之间的复杂关系。其核心观点是,劳动力替代性 AI 将改...
2025-01-15 14:21:27
752
转载 2025 年 AI 十大展望:软件市场扩大 10 倍、系统比模型更重要、OpenAI 先发优势消退...
尽管有 Scaling Law 放缓这样的疑虑,但整体而言,多数业内人士对AI过去一年的诸多进展感到兴奋,对新的一年 AI 的发展更是充满期待,尽管他们对未来的预测可能不尽相同。在本文中,Foundation Capital 合伙人Ashu Grag回顾了 2024 年 AI 发展的里程碑事件,并重点介绍了 2025 年的前景,主要包括:1.预训练局限将推动新的 AI 突破2.AI系...
2025-01-12 12:51:43
1428
转载 900页免费“生成式AI与大模型”电子书|OneFlow年货
难以想象,如果不是Scaling Law放缓,2024年AI领域会发生哪些惊人变化,但你可能又会感到庆幸,正是由于Scaling Law放缓,它给了这个行业的后来者们追赶的机会,也给了更多普通人搭乘这一轮技术革命的机会。AI领域的变化激荡人心。一年前,AI社区普遍认为,与OpenAI的模型相比,大部分模型与它有半年或一年的差距,但大模型预训练逐渐没有秘密,它的入局门槛数量级降低。令国内外科技界深感...
2025-01-01 09:51:07
548
原创 2024年AI盘点:投资高歌猛进、基础设施重构、技术采用加速
本文全面分析了今年AI 的发展,包含AI 技术栈的基础设施层、基础模型层、应用层、工具层,尤其是各个层面的主要收获、值得关注的趋势与值得关注的初创公司。此外,本文还概括了 AI 领域的投资和并购情况,以及其他AI 趋势。需要指出的是,可能限于作者KelvinMu的关注重心,本文除了对中国基础模型的介绍,没有更多关于中国 AI 其他技术栈的进展。不过,这并不妨碍本文仍是我们了解 2024...
2024-12-25 13:38:06
1776
原创 从零实现极速LLM推理
作者 | Andrew Chen翻译|张雪聃、刘乾裕OneFlow编译题图由SiliconCloud平台生成本文旨在从零开始,仅使用C++和CUDA构建一个大语言模型(LLM)推理引擎,且不借助其他外部库。为何要这样做?通过这种方式,我们能够全面了解LLM推理的整个技术栈——这一点正变得日益重要[1]——从CUDA kernel到模型架构,并且切实体会不同的优化方式如何影响推理速度。其中一个最为重...
2024-12-21 08:33:28
1077
转载 AI数据中心历史、技术与关键企业
过去一年,通过模型架构创新、更优质训练数据和更大算力规模来训练模型,顶尖大模型之间的性能差距急剧缩小。如果Scaling law依然有效,为了进一步扩展模型规模与性能,在模型架构创新存在极大不确定性情况下,通过获得更多的算力来建造全新的数据中心,从而更快地训练模型以取得领先地位,这是确定性更高的收益。目前,以马斯克xAI为代表的大模型公司,快速部署了10万台GPU集群,成为数据中心扩展的领头羊,可...
2024-12-13 12:06:03
847
转载 红杉资本2025年AI三大展望:大模型厂商各显神通;杀手级应用AI搜索;AI支出变稳...
2024年,随着Scaling law放缓,AI领域在大模型、基础设施上的能力稳步提升,尽管应用层出现了各种有趣的探索,但是更大的潜能有待挖掘。2025年即将来临,将出现哪些变化?近日,红杉资本投资人David Cahn对2024年AI领域的发展作了简要总结并对2025年作了三大预测。他认为,今年是AI发展的萌芽期,其构建基石已经稳固建立,只待2025年发芽结果。他在本文中阐述了三点预言:首次,基...
2024-12-12 09:35:25
1483
原创 AI半导体技术、市场与未来
过去两年,英伟达崛起是科技领域的一个经典案例。通过CUDA系统,他们创建了一个使用GPU进行机器学习的开发者生态系统;通过Mellanox,他们成为了数据中心网络的领导者。然后,他们将所有硬件集成到服务器中,提供垂直集成的算力一体机。凭借这一系列组合性技术优势,英伟达在“AI淘金热”中提供的铲子占据行业核心地位,这导致它成为有史以来最成功的公司之一。随之而来的是,不少挑战者入局以求从英伟达主导的市...
2024-12-05 13:05:10
11947
原创 比GPU快20倍?d-Matrix推理性价比分析
AI推理算力需求正在大幅增长。一方面,像硅基流动、Fireworks这样的AI基础设施软件公司通过软件层面的优化以提供高性价比的大模型推理服务,另一方面,以Cerebras、Groq为代表的芯片公司相继推出了专用AI推理芯片,通过硬件层面的创新,以数量级的推理速度与成本优势来挑战英伟达GPU的市场地位。AI推理芯片市场的竞争者还在增加。近日,成立于2019年的硅谷推理芯片创业公司d-Matrix的...
2024-12-04 08:03:47
1908
原创 生成式AI推理技术、市场与未来
OpenAI o1、QwQ-32B-Preview、DeepSeek R1-Lite-Preview的相继发布,预示着生成式AI研究正从预训练转向推理(Inference),以提升AI逻辑推理(reasoning)能力,这一转变将极大推动上层应用的发展。红杉资本近期指出,在可预见的未来,逻辑推理和推理时计算将是一个重要主题,并开启生成式AI的下一阶段。新一轮竞赛已然开始。那么,在推理这一新兴市场,...
2024-12-01 13:04:01
1956
原创 50张图,直观理解混合专家(MoE)大模型
Mixtral 8x7B的高效训练与推理效果曾引发AI社区对混合专家(MoE)模型的广泛关注,后来居上的国产开源大模型DeepSeek以及腾讯近期开源的Hunyuan-Large(基于Transformer的最大MoE模型)也选择了MoE框架路线。为何大语言模型总是离不开MoE的身影?借助50多个图例,数据科学家Maarten Grootendorst由浅入深多维度剖析了MoE模型,从基础概念出...
2024-11-29 08:03:48
8438
原创 LLM后训练绝招:1%预训练成本,实现最高20倍算力扩展效果
根据规模定律,扩大训练计算规模可以提高大型语言模型(LLM)性能的关键,但调研机构Epoch AI的研究,LLM再训练无需高额费用,也能让AI能力获得显著提升。在该研究中,他们引入了一个基本框架,用于量化后训练增强的收益和成本,特别是通过计算等效增益来衡量收益。他们将该框架应用于一系列具有代表性的后训练增强,并发现性能提升非常显著,但微调成本通常与预训练成本相比非常小,某些后训练增强技术可以在不到...
2024-11-27 13:05:04
4521
原创 LLM逻辑推演策略选择:推理时计算 vs 训练时计算
AGI实现的一大标志是,具备人类级别的逻辑推理(reasoning)能力。近期,随着推理(inference)模型GPT o1、DeepSeek R1-Lite的发布,模型的逻辑推理能力得到显著提升,也预示着对LLM潜力的深度挖掘正在转向推理阶段。围绕增强LLM逻辑推理能力这一目标,美国人工智能与密码学研究实验室Bagel团队结合最新研究,从算术、常识和符号这三种主要逻辑推理类型出发,对比了在推理...
2024-11-22 10:04:14
4043
1
转载 探索AI框架前沿|OneFlow招聘深度学习研发工程师(实习)
一、岗位名称:深度学习研发工程师-框架开发方向(实习)岗位职责1. 参与 OneFlow 框架开发、重构与性能优化;2. 参与深度学习编译、高阶自动微分等深度学习框架相关技术演进工作。岗位要求1. 计算机或电子通信相关专业,本科及以上学历;2. 具备C/C++、Python编程基础,有良好的软件开发素养,熟悉TDD、CI/CD、敏捷开发流程等;3. 了解深度学习模型,有一定机器学习基础;4. 熟悉...
2024-11-22 10:04:14
491
原创 企业生成式AI最新调查:AI支出激增6倍,多模型部署盛行
企业AI格局正在迅速重塑。随着实验项目逐步落地投入生产,海外风险投资机构Menlo Ventures最新发布的《2024年企业生成式AI现状》报告对600名企业IT决策者展开了调研,深入分析了这场变革中正在浮现的新赢家与失利者。(本文由OneFlow编译发布,转载请联系授权。原文:https://menlovc.com/2024-the-state-of-generative-ai-in-the...
2024-11-21 12:54:12
5579
原创 强化学习之父Richard Sutton:AGI研究的下一个范式
OpenAI下一代GPT近期被爆遇到瓶颈,这让“Scaling Law撞墙”的声音变得更响,尽管业内对此争论不休,但现实情况是,大模型确实不再像年前那样有突飞猛进的进展。作为启发大模型领域提出Scaling Law的研究者,强化学习之父、阿尔伯塔大学教授Richard Sutton在2019年发表了后来被AI领域奉为经典的The Bitter lesson。在这篇文章中,他指出,AI研究在过去70...
2024-11-20 08:04:04
4863
原创 LLM长上下文RAG能力实测:GPT o1 vs Gemini
本文深入探讨了检索增强生成(RAG)技术在AI工作流中的应用,特别是OpenAI的o1系列模型和Google的Gemini 1.5模型在长上下文RAG任务中的性能,分析了不同模型在长上下文RAG任务中的失败模式,为开发者构建RAG系统提供了宝贵参考。(本文由OneFlow编译发布,转载请联系授权。原文:https://www.databricks.com/blog/long-context-rag...
2024-11-12 08:03:55
4236
原创 推算LLM训练的GPU内存需求
本文将分析大语言模型训练的GPU内存需求,主要包括三个方面:训练数十亿参数基于Transformer的LLM时,每个GPU设备需要多少GPU内存;估算内存需求的公式是什么;如果模型无法匹配内存,在实践中应采取哪些措施来减少内存需求。(本文由OneFlow编译发布,转载请联系授权。原文:https://medium.com/@maxshapp/understanding-and-estimating...
2024-11-08 08:03:16
4484
原创 70B大模型训练秘方③:1000次超参数优化实验的发现
今年6月,大模型公司Imbue依托它们自主构建的基础设施,从零起步,成功训练出一个70B参数的模型,其在相关推理任务上的卓越表现远零样本GPT-4o。在《70B大模型训练秘方① :数据集创建与评估》一文中,他们分享了用于模型评估的数据集,包含11个公共数据集的高质量子集,以及一套用于代码理解的原始问题。重点分享了为什么选择这些特定的数据集,以及数据创建过程和实际数据集的详细信息。在《从裸机到70B...
2024-11-05 08:04:32
3361
原创 从通才到专家:AI系统向复合AI的演变
复合AI系统凭借其多模型、多工具的协同方式,展现出传统单一AI难以匹敌的应对复杂问题的能力,引发了广泛关注和讨论。本文从单体架构和微服务架构的演变切入,揭示了复合AI系统如何通过模块化的方式优化任务执行,提升灵活性与精准度。以Databricks Mosaic AI平台为例,作者Yared Gudeta分析了复合AI在维护系统中的应用实例,展示了该系统如何整合向量嵌入、图数据库和大语言模型以高效解...
2024-11-01 13:03:47
4476
原创 用初中数学理解LLM工作原理
本文将从基础开始讨论大语言模型(LLM)的工作原理——假设你只知道如何对两个数字进行加法和乘法。首先,作者Rohit Patel会从构建一个简单的生成式人工智能出发,逐步阐释理解现代LLM和Transformer架构所需的所有知识。本文将剔除机器学习中所有花哨语言和术语,将一切简单地表示为数字。(本文作者Rohit Patel是Meta的数据科学家。本文由OneFlow编译发布,转载请联系授权。原...
2024-10-30 08:04:04
9728
3
原创 10个改变日常的大模型隐藏玩法
大模型可以写代码、做客服、帮忙写文章,但这些不过是冰山一角,大模型还有哪些不为人知但实用的用途?最近,关于大模型的隐藏技能在Reddit上引发热议,各种有趣的“武林秘籍”层出不穷。以下是部分大模型玩家眼中被低估的用途:1. 我手头大约有80盘VHS家庭录像带,于是把它们全部转换成了数字格式。然后,我将每段1-4小时的视频通过Whi...
2024-10-26 10:33:45
5781
原创 生成式AI的新战场:逻辑推断与推理计算
自生成式AI革命开启以来,研究正推动该领域从"快速思考(即迅速给出预训练的回应)",向“缓慢思考(即在推理[inference]过程中进行逻辑推理[reasonging])”转变。这一转变正在开启一系列全新的智能应用。生成式AI市场的基础层正趋于稳定,处于一种由一批关键的大型企业及企业联盟构成的均衡状态,其中包括Microsoft/OpenAI、AWS/Anthropic、Meta以及Google...
2024-10-25 09:33:54
5092
原创 LLM量化效果评估:50万次实测后的发现
尽管量化已成为大模型性能优化的常规技术手段,但由于很难评估模型量化的实际效果,依然有人质疑量化模型的准确度与生成质量。对此,基于Llama 3.1系列模型,AI模型优化与加速推理服务商Neural Magic进行了超五十万次的实测,以对比模型量化与原始模型的效果。以下是他们评估后中的要点:1.设计了一套覆盖广泛推理场景的评估体系,确保从结构化任务到实际应用的全面分析,包括学术基准测试、真实场景基准...
2024-10-24 08:03:19
4108
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅