1.二分搜索:
二分查找的特点:
只能应用于顺序存储结构,而且要求查找的数据是单调的而且如果有重复元素的时候需要改写程序。
但是它的查找速度快,比较次数少,性高高效,时间复杂度只有O(lgn);
一般性的查找代码示例:
int BinSearch(SeqList *R, int n , KeyType K)
{
//在有序表R[0..n-1]中进行二分查找,成功时返回结点的位置,失败时返回-1
int low=0,high=n-1,mid; //置当前查找区间上、下界的初值
if(R[low].key==K)
return low ;
if(R[high].key==k)
return high;
while(low<=high)
{
//当前查找区间R[low..high]非空
mid=low+((high-low)/2);
//使用 (low + high) / 2 会有整数溢出的问题
//(问题会出现在当low + high的结果大于表达式结果类型所能表示的最大值时,
//这样,产生溢出后再/2是不会产生正确结果的,而low+((high-low)/2)不存在这个问题
if(R[mid].key==K)
return mid; //查找成功返回
if(R[mid].key>K)
high=mid-1; //继续在R[low..mid-1]中查找
else
low=mid+1; //继续在R[mid+1..high]中查找
}
if(low>high)
return -1; //当low>high时表示查找区间为空,查找失败
} //BinSeareh
求解性的答案查找:
如http://acm.hdu.edu.cn/showproblem.php?pid=2199
给出方程:
8*x4 + 7*x3 + 2*x2 + 3*x + 6 = Y
其中,实数Y满足 (fabs(Y) <= 1e10)
请输出x在区间[0,100]的解,结果精确到小数点后4位。
//Time:0MS
//Mem :400K
//二分查找求解。
#include <iostream>
#include <cmath>
using namespace std;
double get_equ(double x)//当为x时。
{
return 8*pow(x, 4.0) + 7*pow(x, 3.0) + 2*pow(x, 2.0) + 3*x + 6;
}
int main()
{
int t;
double y;
cin>>t;
double l,r,mid;
while(t--)
{
cin>>y;
if(y<26 || y>807020306)
cout<<"No solution!\n";
else
{
l=1;
r=100;
while(r - l > 1e-6)
{
mid = (l+r)/2;
if(get_equ(mid) > y)
r = mid - 1e-7;
else
l = mid + 1e-7;
}
printf("%f\n",mid);
}
}
return 0;
}
三分查找:
这篇博文写的很全面:http://blog.csdn.net/beiyouyu/article/details/7875480
ps:三分查找前提是:只有当所查找函数为凸函数的时候(不一定要求可导)而且查找比二分查找的性能低(因为每次查找只能排除1/3的情况,但是二分能排除1/2)。这些特性决定了三分查找的应用范围比二分要狭窄很多。