PAT 甲级 1003 Emergency 七种方法

本文介绍了多种解决最短路径问题的算法,包括Dijkstra、Bellman-Ford和SPFA等,并提供了相应的C++实现。这些算法在解决含有负权边和可能有多个最短路径的问题中各有优势,适用于不同的场景。此外,还探讨了如何通过DFS进一步优化这些算法以获取更优解。
摘要由CSDN通过智能技术生成

注意:题目中没有零权边,不然就可能会有无数条最短路。

方法一:Dijkstra+堆优化

#include <bits/stdc++.h>
using namespace std;

const int MAXN=510;
const int INF=0x3f3f3f3f;

unordered_map<int,int> graph[MAXN];
int v_w[MAXN]; // 点权
int dis[MAXN],done[MAXN];
int path_num[MAXN],team_num[MAXN]; // 最短路条数和最大营救队数目 

int n,m,c1,c2;

struct QNode{
    int v,c;
    bool operator< (const QNode &r) const {return c>r.c;}
    QNode(int _v=-1,int _c=INF):v(_v),c(_c){}
};
void Dijkstra(int s)
{
    memset(dis,INF,sizeof(dis));
    memset(done,false,sizeof(done));
    memset(path_num,0,sizeof(path_num));
    memset(team_num,0,sizeof(team_num));
    
    dis[s]=0;path_num[s]=1,team_num[s]=v_w[s];
    priority_queue<QNode> q;
    q.push(QNode(s,0));
    while(!q.empty()){
        int now=q.top().v;q.pop();
        if(done[now]) continue;
        done[now]=true;
        for(auto edge:graph[now]){
            int to=edge.first,cost=edge.second;
            if(!done[to]&&dis[to]>dis[now]+cost){
                dis[to]=dis[now]+cost;
                q.push(QNode(to,dis[to]));
                path_num[to]=path_num[now];
                team_num[to]=team_num[now]+v_w[to];
            }else if(!done[to]&&dis[to]==dis[now]+cost){
                path_num[to]+=path_num[now];
                if(team_num[to]<team_num[now]+v_w[to])
                    team_num[to]=team_num[now]+v_w[to];
            }
        }
    }
}

int main() {
    cin>>n>>m>>c1>>c2;
    for(int i=0;i<n;++i) cin>>v_w[i];
    int x,y,z;
    for(int i=0;i<m;++i){
        cin>>x>>y>>z;
        graph[x][y]=graph[y][x]=z;
    }
    Dijkstra(c1);
    
    cout<<path_num[c2]<<" "<<team_num[c2];
}

方法二:Dijkstra+堆优化+DFS

适用于标尺特别多的情况,先把最短路径前驱树(根据距离标尺)记录下来。对这棵树进行 DFS 的时,再根据其他标尺进行判断。
int path_num[MAXN]team_num[MAXN] 就不再需要了。

#include <bits/stdc++.h>
using namespace std;

const int MAXN=510;
const int INF=0x3f3f3f3f;

unordered_map<int,int> graph[MAXN];
int v_w[MAXN]; // 点权
int dis[MAXN],done[MAXN];
set<int> pre[MAXN]; // 最短路前驱树

int n,m,c1,c2;

struct QNode{
    int v,c;
    bool operator< (const QNode &r) const {return c>r.c;}
    QNode(int _v=-1,int _c=INF):v(_v),c(_c){}
};
void Dijkstra(int s)
{
    memset(dis,INF,sizeof(dis));
    memset(done,false,sizeof(done));
    dis[s]=0;
    priority_queue<QNode> q;
    q.push(QNode(s,0));
    while(!q.empty()){
        int now=q.top().v;q.pop();
        if(done[now]) continue;
        done[now]=true;
        for(auto edge:graph[now]){
            int to=edge.first,cost=edge.second;
            if(!done[to]&&dis[to]>=dis[now]+cost){
                if(dis[to]!=dis[now]+cost)
                    pre[to].clear();
                pre[to].insert(now);
                dis[to]=dis[now]+cost;
                q.push(QNode(to,dis[to]));
            }
        }
    }
}

int max_team=0,roads=0;
void DFS(int s,int team)
{
    team+=v_w[s];
    if(pre[s].empty()){
        roads++;
        if(team>max_team) max_team=team;
    }else{
        for(auto i:pre[s]){
            DFS(i,team);
        }
    }
}

int main() {
    cin>>n>>m>>c1>>c2;
    for(int i=0;i<n;++i) cin>>v_w[i];
    int x,y,z;
    for(int i=0;i<m;++i){
        cin>>x>>y>>z;
        graph[x][y]=graph[y][x]=z;
    }
    Dijkstra(c1);
    DFS(c2,0);
    
    cout<<roads<<" "<<max_team;
}

方法三:BellmanFord

#include <bits/stdc++.h>
using namespace std;

const int MAXN=510;
const int INF=0x3f3f3f3f;
int n,m,c1,c2;
struct Edge{
    int u,v,c;
    Edge(int _u=-1,int _v=-1,int _c=INF):u(_u),v(_v),c(_c){}
};
int v_w[MAXN];
vector<Edge> edges;
int dis[MAXN];
set<int> pre[MAXN];
int path_num[MAXN],team_num[MAXN];
void BellmanFord(int s)
{
    memset(dis,INF,sizeof(dis));
    memset(path_num,0,sizeof(path_num));
    memset(team_num,0,sizeof(team_num));
    dis[s]=0;path_num[s]=1,team_num[s]=v_w[s];
    for(int i=0;i<n-1;++i){
        for(auto e:edges){
            if(dis[e.v]>dis[e.u]+e.c){
                dis[e.v]=dis[e.u]+e.c;
                pre[e.v].clear();pre[e.v].insert(e.u);
                path_num[e.v]=path_num[e.u];
                team_num[e.v]=team_num[e.u]+v_w[e.v];
            }else if(dis[e.v]==dis[e.u]+e.c){
                // 不同于 Dijkstra,由于有重复的松弛操作,
                // 所以这里要重新统计最短路径。
                pre[e.v].insert(e.u);
                path_num[e.v]=0;
                for(auto i:pre[e.v])
                    path_num[e.v]+=path_num[i];
                if(team_num[e.v]<team_num[e.u]+v_w[e.v])
                    team_num[e.v]=team_num[e.u]+v_w[e.v];
            }
        }
    }
}

int main() {
    cin>>n>>m>>c1>>c2;
    int x,y,z;
    for(int i=0;i<n;++i) cin>>v_w[i];
    for(int i=0;i<m;++i){
        cin>>x>>y>>z;
        edges.emplace_back(x,y,z);
        edges.emplace_back(y,x,z);
    }
    BellmanFord(c1);
    cout<<path_num[c2]<<" "<<team_num[c2];
}

方法四:BellmanFord+DFS

方法三里面前驱子图都求出来了,那么对于其他标尺的DFS就按照方法二写一个函数就完事儿 , 就不给代码啦 ~

int path_num[MAXN]team_num[MAXN] 也不再需要了,函数内部简化不少。

#include <bits/stdc++.h>
using namespace std;

const int MAXN=510;
const int INF=0x3f3f3f3f;
int n,m,c1,c2;

struct Edge{
    int u,v,c;
    Edge(int _u=-1,int _v=-1,int _c=INF):u(_u),v(_v),c(_c){}
};
vector<Edge> edges;
int v_w[MAXN];

int dis[MAXN];
set<int> pre[MAXN];
void BellmanFord(int s)
{
    memset(dis,INF,sizeof(dis));
    dis[s]=0;
    
    for(int i=0;i<n-1;++i){
        for(auto e:edges){
            if(dis[e.v]>=dis[e.u]+e.c){
                if(dis[e.v]!=dis[e.u]+e.c)
                    pre[e.v].clear();
                dis[e.v]=dis[e.u]+e.c;
                pre[e.v].insert(e.u);
            }
        }
    }
}

int max_team=0,roads=0;
void DFS(int s,int team)
{
    team+=v_w[s];
    if(pre[s].empty()){
        roads++;
        if(team>max_team) max_team=team;
    }else{
        for(auto i:pre[s]){
            DFS(i,team);
        }
    }
}

int main() {
    cin>>n>>m>>c1>>c2;
    int x,y,z;
    for(int i=0;i<n;++i) cin>>v_w[i];
    for(int i=0;i<m;++i){
        cin>>x>>y>>z;
        edges.emplace_back(x,y,z);
        edges.emplace_back(y,x,z);
    }
    BellmanFord(c1);
    DFS(c2,0);
    
    cout<<roads<<" "<<max_team;
}

方法五:SPFA

#include <bits/stdc++.h>
using namespace std;

const int MAXN=510;
const int INF=0x3f3f3f3f;
int n,m,c1,c2;
unordered_map<int,int> graph[MAXN];
int v_w[MAXN];
int dis[MAXN],in_q[MAXN];
set<int> pre[MAXN];
int path_num[MAXN],team_num[MAXN];

void SPFA(int s)
{
    memset(dis,INF,sizeof(dis));
    memset(in_q,false,sizeof(in_q));
    memset(path_num,0,sizeof(path_num));
    memset(team_num,0,sizeof(team_num));
    dis[s]=0;path_num[s]=1,team_num[s]=v_w[s];
    
    queue<int> q;
    q.push(s),in_q[s]=true;
    while(!q.empty()){
        int now=q.front();q.pop(),in_q[now]=false;
        for(auto edge:graph[now]){
            int to=edge.first,cost=edge.second;
            if(dis[to]>dis[now]+cost){
                dis[to]=dis[now]+cost;
                if(!in_q[to]) q.push(to),in_q[to]=true;
                pre[to].clear();pre[to].insert(now);
                path_num[to]=path_num[now];
                team_num[to]=team_num[now]+v_w[to];
            }else if(dis[to]==dis[now]+cost){
                pre[to].insert(now);path_num[to]=0;
                for(auto i:pre[to])
                    path_num[to]+=path_num[i];
                // 注意 这里更新了 num 之后要把 to 入队。 
                if(!in_q[to]) q.push(to),in_q[to]=true;
                if(team_num[to]<team_num[now]+v_w[to])
                    team_num[to]=team_num[now]+v_w[to];
            }
        }
    }
}

int main() {
    cin>>n>>m>>c1>>c2;
    for(int i=0;i<n;++i) cin>>v_w[i];
    int x,y,z;
    for(int i=0;i<m;++i){
        cin>>x>>y>>z;
        graph[x][y]=graph[y][x]=z;
    }
    SPFA(c1);

    cout<<path_num[c2]<<" "<<team_num[c2];
}

方法六:SPFA+DFS

方法五里面前驱子图 pre 也顺带求出来啦,剩下的就同方法四了~

int path_num[MAXN]team_num[MAXN] 也不再需要了。

#include <bits/stdc++.h>
using namespace std;

const int MAXN=510;
const int INF=0x3f3f3f3f;
int n,m,c1,c2;

unordered_map<int,int> graph[MAXN];
int v_w[MAXN];

int dis[MAXN],in_q[MAXN];
set<int> pre[MAXN];
void SPFA(int s)
{
    memset(dis,INF,sizeof(dis));
    memset(in_q,false,sizeof(in_q));
    dis[s]=0;
    
    queue<int> q;
    q.push(s),in_q[s]=true;
    while(!q.empty()){
        int now=q.front();
        q.pop(),in_q[now]=false;
        for(auto edge:graph[now]){
            int to=edge.first,cost=edge.second;
            if(dis[to]>=dis[now]+cost){
                if(dis[to]!=dis[now]+cost)
                    pre[to].clear();
                pre[to].insert(now);
                dis[to]=dis[now]+cost;
                if(!in_q[to]) q.push(to),in_q[to]=true;
            }
        }
    }
}

int max_team=0,roads=0;
void DFS(int s,int team)
{
    team+=v_w[s];
    if(pre[s].empty()){
        roads++;
        if(team>max_team) max_team=team;
    }else{
        for(auto i:pre[s]){
            DFS(i,team);
        }
    }
}

int main() {
    cin>>n>>m>>c1>>c2;
    for(int i=0;i<n;++i) cin>>v_w[i];
    int x,y,z;
    for(int i=0;i<m;++i){
        cin>>x>>y>>z;
        graph[x][y]=graph[y][x]=z;
    }
    SPFA(c1);
    DFS(c2,0);
    
    cout<<roads<<" "<<max_team;
}

方法七:DFS直接搜索

没错,这道题规模很小,直接搜索也是可以的。

#include <bits/stdc++.h>
using namespace std;

const int MAXN=510;
const int INF=0x3f3f3f3f;
int n,m,c1,c2;
unordered_map<int,int> graph[MAXN];
int v_w[MAXN];

int min_dis=INF,path_num=0,team_num=0,vis[MAXN];
void DFS(int now,int dis_now,int team_now)
{
    if(dis_now>min_dis) return;
    if(now==c2){
        if(dis_now<min_dis){
            min_dis=dis_now;
            path_num=1;
            team_num=team_now;
        }else if(dis_now==min_dis){
            path_num++;
            if(team_num<team_now)
                team_num=team_now;
        }
        return;
    }
    for(auto edge:graph[now]){
        int to=edge.first,cost=edge.second;
        if(!vis[to]&&dis_now+cost<=min_dis){
            vis[to]=true;
            DFS(to,dis_now+cost,team_now+v_w[to]);
            vis[to]=false;
        }
    }
}

int main() {
    cin>>n>>m>>c1>>c2;
    for(int i=0;i<n;++i) cin>>v_w[i];
    int x,y,z;
    for(int i=0;i<m;++i){
        cin>>x>>y>>z;
        graph[x][y]=graph[y][x]=z;
    }

    memset(vis,false,sizeof(vis));
    vis[c1]=true;
    DFS(c1,0,v_w[c1]);

    cout<<path_num<<" "<<team_num;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值