数据挖掘
各种控恩恩恩
这个作者很懒,什么都没留下…
展开
-
Apriori algorithm---数据挖掘初学1
关联规则的目的在于在一个数据集中找出项之间的关系,也称之为购物蓝分析 (market basketanalysis)。例如,购买鞋的顾客,有10%的可能也会买袜子,60%的买面包的顾客,也会买牛奶。这其中最有名的例子就是"尿布和啤酒"的故事了。 关联规则的应用场合。在商业销售上,关联规则可用于交叉销售,以得到更大的收入;在保险业务方面,如果出现了不常见的索赔要求组合,则可能为欺诈,需转载 2015-11-04 20:10:59 · 438 阅读 · 0 评论 -
数据挖掘5-K近邻
K近邻算法发表于 2012-11-12 下图中,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。 K 最近邻 (k-Nearest Neighbor,KNN) 分类算法,是一个理论上比较成熟的方法,也是最转载 2015-11-10 20:38:58 · 983 阅读 · 0 评论 -
数据挖掘4---朴素贝叶斯算法
我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比的美感。而每次将学过的算法应用到实际中,并解决了实际问题后,那种快感更是我在其它地方体会不到的。 一直想写关于算法的博文,也曾写过零散的两篇,但也许是相比于工程性文章来说太小众,并没有引起大家的兴趣。最近面临毕业找工作,为了能给自己增加筹码,决定再次复习算法方面的知识,我决定趁这个机会,写一系列关于算转载 2015-11-10 19:52:40 · 470 阅读 · 0 评论 -
看到的一篇总结性的文章。先存着
目前看到的比较全面的分类算法,总结的还不错. 主要分类方法介绍解决分类问题的方法很多,单一的分类方法主要包括:决策树、贝叶斯、人工神经网络、K-近邻、支持向量机和基于关联规则的分类等;另外还有用于组合单一分类方法的集成学习算法,如Bagging和Boosting等。 (1)决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则转载 2015-11-10 20:11:19 · 566 阅读 · 0 评论 -
数据挖掘3---决策树的构造
今天学习了决策树算法中的ID3、c4.5、CART算法,记录如下: 决策树算法:顾名思义,以二分类问题为例,即利用自变量构造一颗二叉树,将目标变量区分出来,所有决策树算法的关键点如下: 1.分裂属性的选择。即选择哪个自变量作为树叉,也就是在n个自变量中,优先选择哪个自变量进行分叉。而采用何种计算方式选择树叉,决定了决策树算法的类型,即ID3、c4.5、CART三种决策树转载 2015-11-10 17:29:51 · 1294 阅读 · 0 评论 -
数据挖掘2关于fp-tree
FP-Tree算法FPTree算法:在不生成候选项的情况下,完成Apriori算法的功能。FPTree算法的基本数据结构,包含一个一棵FP树和一个项头表,每个项通过一个结点链指向它在树中出现的位置。基本结构如下所示。需要注意的是项头表需要按照支持度递减排序,在FPTree中高支持度的节点只能是低支持度节点的祖先节点。另外还要交代一下FPTree算法中几个基本的概念:FP-Tre转载 2015-11-10 12:36:22 · 1775 阅读 · 0 评论 -
DBSCAN
[+]一基于密度的聚类算法的概述二DBSCAN算法的原理基本概念算法流程三实验仿真参考文献一、基于密度的聚类算法的概述 最近在Science上的一篇基于密度的聚类算法《Clustering by fast search and find of density peaks》引起了大家的关注(在我的博文“论文中的机器学习算法——基于密度峰值的聚类算法”中也进行了中转载 2016-12-05 10:03:37 · 2585 阅读 · 0 评论