pipenv入门 //今天用同学的一个模型,被种草了pipenv=。=安利一波,文档是转载的,也方便自己查看python - pipenv 使用概览原创青柠loft2018-02-26 22:29:05评论(0)161人阅读欢迎访问我的blog:http://www.qnloft.com/blogpipenv 是 python的 包 / 虚拟环境管理工具。有点类似Java中maven。GitHub地址:https:...
拯救一下荒废已久的博客 emmmmmm前前前面在忙着找工作前前面准备弄毕设前面忙完以后浪了几周emmmmmm要回归学习了从下周开始,每周读一篇QA,Dialog方面的paper,然后更新到博客还有两个多月就要毕业了emmm老大也让我提前准备一下工作需要用到的知识点emmm现在开始准备一下emmm每周至少一篇Paper,然后再温习一下TF,毕竟工作后很多时候还是用TFFLAG已经立完,希望不要打自己脸。...
安装Pytorch 首先确定cuda是多少版本 的。我的cuda7.5 ,python 2.7安装地址:python2.7pip install http://download.pytorch.org/whl/cu75/torch-0.1.11.post5-cp27-none-linux_x86_64.whl 但是很慢所以用镜像,个人用的豆瓣pip install http://downlo
GAN相关论文 原始GANGoodfellow和Bengio等人发表在NIPS 2014年的文章Generative adversary network,是生成对抗网络的开创文章,论文思想启发自博弈论中的二人零和博弈。在二人零和博弈中,两位博弈方的利益之和为零或一个常数,即一方有所得,另一方必有所失。GAN模型中的两位博弈方分别由生成式模型(generative model)和判别式模型(discrimi
N个节点的二叉树有多少种形态 //catalan数,嘻嘻嘻拿到这个题,首先想到的是直接写出表达式肯定不行,所以有必要从递推入手。由特殊到一般,归纳法么~而且二叉树离不开递推这个尿性。。。 先考虑只有一个节点的情形,设此时的形态有f(1)种,那么很明显f(1)=1如果有两个节点呢?我们很自然想到,应该在f(1)的基础上考虑递推关系。那么,如果固定一个节点后,有两种情况,一是左子树还剩一个节点,此刻
自然语言处理中的Attention Model:是什么及为什么 /* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ author: 张俊林 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model(后文有时会简称AM模型)这个词。AM模型应该说
python reduce的用法 python的reduce()函数reduce()函数也是Python内置的一个高阶函数。reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值。例如,编写一个f函数,接收x和y,返回x和y的和:
点到超平面的距离 这是高中时候的基础数学,然而也是比较重要的一个知识点,在很多地方都会用到,在基于超平面分类算法中,向量空间中任意一点到超平面的距离也是一个基础知识点平面的一般式方程Ax +By +Cz + D = 0其中n = (A, B, C)是平面的法向量,D是将平面平移到坐标原点所需距离(所以D=0时,平面过原点)向量的模(长度)给定一个向量V(x, y, z),则|
学习TensorFlow,保存学习到的网络结构参数并调用 在深度学习中,不管使用那种学习框架,我们会遇到一个很重要的问题,那就是在训练完之后,如何存储学习到的深度网络的参数?在测试时,如何调用这些网络参数?针对这两个问题,本篇博文主要探索TensorFlow如何解决他们?本篇博文分为三个部分,第一是讲解tensorflow相关的函数,第二是代码例程,第三是运行结果。一 tensorflow相关的函数我们说的这两个功能主要由一个类来完成,class
DBSCAN [+]一基于密度的聚类算法的概述二DBSCAN算法的原理基本概念算法流程三实验仿真参考文献一、基于密度的聚类算法的概述 最近在Science上的一篇基于密度的聚类算法《Clustering by fast search and find of density peaks》引起了大家的关注(在我的博文“论文中的机器学习算法——基于密度峰值的聚类算法”中也进行了中
EM算法好详细的推导 好啦,下面谈谈EM算法。关于前两篇博文http://blog.csdn.net/lvhao92/article/details/50788380和http://blog.csdn.net/lvhao92/article/details/50802703为本篇做了个大铺垫。都说了一下EM算法的应用。同学们想必也大体上了解了EM算法是个什么东东,具体怎么的去运用。其实,个人认为这已经足够了。这篇博文为
tensorflow新手必看,tensorflow入门教程,tensorflow示例代码 这些案例适合那些想要清晰简明的 TensorFlow 实现案例的初学者。本教程还包含了笔记和带有注解的代码。项目地址:https://github.com/aymericdamien/TensorFlow-Examples教程索引0 - 先决条件机器学习入门:笔记:https://github.com/aymericdamien/TensorFlow-Exa
Python/Theano 加载和保存模型 加载和保存模型当实验时,使用梯度下降可能会花费几个小时(有时几天)寻找好的参数。一旦你找到它们,可以保存那些权值。在搜索过程中,你也可能想要保存当前最好的估计。pickle保存共享变量中的numpy的n维数组保存或者归档模型的参数的最好的方法是使用pickle或者deepcopy保存n维数组。比如,如果你的参数在共享变量w、v、u中,则保存的命令应该看起来像这样:>>>
关于lstm和gru的一些简单资料,讲得比较容易理解 Recurrent Neural Networks人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义。我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考。我们的思想拥有持久性。传统的神经网络并不能做到这点,看起来也像是一种巨大的弊端。例如,假设你希望对电影中的每个时间点的时间类型进行分类。传统的神
theano的scan的大概科普文章。。。 一、theano的工作原理 在theano编程中,Graph是指导theano如何对变量进行操作的唯一途径,theano变量和theano Ops(操作)是Graph的两个基本构成元素。Graph只能由theano变量(包括shared变量)或常数组成。如图所示: 通常可以按如下步骤构造Graph:首先声明theano变量,theano变量在Pytho
python lambda表达式 以Mark Lutz著的《Python学习手册》为教程,每天花1个小时左右时间学习,争取两周完成。 --- 写在前面的话2013-7-22 21:00 学习笔记1,lambda的一般形式是关键字lambda后面跟一个或多个参数,紧跟一个冒号,以后是一个表达式。lambda是一个表达式而不是一个语句。它能够出现在Python语法不允许def出现的地方。作为表达式,lamb
python zip相关 zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表。具体意思不好用文字来表述,直接看示例:1.示例1:x = [1, 2, 3]y = [4, 5, 6]z = [7, 8, 9]xyz = zip(x, y, z)print xyz运行的结果是:[(1, 4, 7), (2, 5, 8), (3, 6, 9)]
python调用java函数 可以使用py4j包,真的很方便学习地址 http://blog.csdn.net/shy871265996/article/details/11935033注意,如果有多个java文件都需要被调用,可以对于每个不同的java在 GatewayServer server = new GatewayServer(app);app后面加一个端口参数,比如25335这样的。当然加完端口在p
Unsupported major.minor version 52.0 最近实验室项目需要用到科大讯飞的一个工具包,运行工具包嘛,我直接拿去ubuntu上跑,完全跑不动,结果看了一下工具包,发现,居然调用,exe,额,于是又拿到windows上跑,结果在cmd下出现Unsupported major.minor version 52.0,搜索其实就是版本不对。于是看了一下自己在windows的环境,太old,于是重新下载了一个新版本,安装,解决。