【C++】树状数组

定义

所谓树状数组,逻辑结构是一棵树,但是采用数组实现,他能解决单点修改区间查询类的问题,属于前缀和的一种优化。

lowbit

学习树状数组,首先要引入 l o w b i t lowbit lowbit概念,所谓 l o w b i t lowbit lowbit,指的是二进制数最低位的 1 1 1的权值,比如二进制数 1100 1100 1100的lowbit就是二进制表示就是 100 100 100,也就是权值为 2 2 = 4 2^2=4 22=4,下文中我们用 l o w b i t ( x ) lowbit(x) lowbit(x)表示 x x x l o w b i t lowbit lowbit值。实际上, l o w b i t ( x ) = x & ( − x ) lowbit(x)=x\&(-x) lowbit(x)=x&(x) & \& &表示按位与运算。

inline int lowbit(int i){return i&(-i);}

树状数组结构


上图摘自orangebird,在图中 A i A_i Ai表示原数组, C i C_i Ci表示 A i A_i Ai对应的树状数组。

C i C_i Ci维护的是 A i A_i Ai区间信息,那么 C i C_i Ci究竟维护什么区间呢?我们可以先计算下 l o w b i t ( i ) lowbit(i) lowbit(i)

lowbit(1)=1
lowbit(2)=2
lowbit(3)=1
lowbit(4)=1
lowbit(5)=1
lowbit(6)=2
lowbit(7)=1
lowbit(8)=8

我们可以发现, C i C_i Ci维护的长度就是 l o w b i t ( i ) lowbit(i) lowbit(i),维护区间是 [ i − l o w b i t ( i ) + 1 , i ] [i-lowbit(i)+1,i] [ilowbit(i)+1,i]

C 3 C3 C3维护的区间是 [ 2 − l o w b i t ( 2 ) + 1 , 2 ] [2-lowbit(2)+1,2] [2lowbit(2)+1,2] [ 1 , 2 ] [1,2] [1,2] C 8 C8 C8维护的区间是 [ 8 − l o w b i t ( 8 ) + 1 , 8 ] [8-lowbit(8)+1,8] [8lowbit(8)+1,8] [ 1 , 8 ] [1,8] [1,8]

那么树状数组的 C i C_i Ci可能会影响哪些位的值呢?以 C 1 C1 C1为例, 1 + l o w b i t ( 1 ) = 2 , 2 + l o w b i t ( 2 ) = 4 , 4 + l o w b i t ( 4 ) = 8 1+lowbit(1)=2,2+lowbit(2)=4,4+lowbit(4)=8 1+lowbit(1)=22+lowbit(2)=44+lowbit(4)=8,我们发现第 i i i个数值会递归影响所有的父结点,在树状数组中编号为 i i i的结点的父结点编号为 i + l o w b i t ( i ) i+lowbit(i) i+lowbit(i)

应用举例

单点修改区间和查询

考虑一类问题,给出长度为 l e n len len的连续区间,并给出每个端点的初始值,现允许在询问的过程中进行单点修改,每次询问的是区间 [ l , r ] [l,r] [l,r]的和。

我们可以转化连续区间为 [ 1 , l e n ] [1,len] [1,len]的树状数组,假设 A A A为原数组, C i C_i Ci为所维护的树状数组,维护的是区间和信息。

更新函数

  • 由于树状数组初始化需要借用更新函数,故放到前面。所做的工作是将编号 i i i i i i所影响的编号位置都增加 x x x,减小可以认为是增加 − x -x x
void update(int i,int x){
	while(i<=len){
		C[i]+=x;//加上x
		i+=lowbit(i);//下一个被影响的i
	}
}

初始化函数

void init(){
	memset(C,0,sizeof(C));//初始化C数组为0
	for(int i=1;i<=len;i++){
		update(i,A[i]);//递归插入A[i]
	}
}

前缀和查询

  • 由于树状数组维护的是区间 [ i − l o w b i t ( i ) + 1 , i ] [i-lowbit(i)+1,i] [ilowbit(i)+1,i],我们无法直接求得 [ l , r ] [l,r] [l,r]的和,所以我们先求 [ 1 , i ] [1,i] [1,i]的和,记为 S u m ( i ) Sum(i) Sum(i),则 S u m [ l , r ] = S u m ( r ) − S u m ( l − 1 ) Sum_{[l,r]}=Sum(r)-Sum(l-1) Sum[l,r]=Sum(r)Sum(l1)
int Sum(int i){//计算[1,i]的和
	int sum=0;
	while(i){
		sum+=C[i};//在区间内
		i-=lowbit(i);//上一个未被影响的编号
	}
	return sum;
}

区间查询

  • 根据差分思想,即可求得 [ l , r ] [l,r] [l,r]的和,即 S u m [ l , r ] = S u m ( r ) − S u m ( l − 1 ) Sum_{[l,r]}=Sum(r)-Sum(l-1) Sum[l,r]=Sum(r)Sum(l1)
int query(int l,int r){
	return Sum(r)-Sum(l-1);
}

区间修改单点查询

考虑一类问题,给出长度为 l e n len len的连续区间,并给出每个端点的初始值,现允许在询问的过程中增减某个区间,每次询问的是点 i i i的值。

我们可以转化连续区间为 [ 1 , l e n ] [1,len] [1,len]的树状数组,假设 A A A为原数组, C i C_i Ci为所维护的树状数组。

此问题需要引入差分数组 B i B_i Bi B i B_i Bi记录的是 A i − A i − 1 A_i-A_{i-1} AiAi1,不难发现 ∑ i = 1 n B i = A n \sum_{i=1}^{n} B_i=A_n i=1nBi=An C i C_i Ci则维护 B i B_i Bi的区间 [ l , r ] [l,r] [l,r]和,因此 ∑ i = 1 n C i = A n \sum_{i=1}^{n} C_i=A_n i=1nCi=An

当区间 [ l , r ] [l,r] [l,r]增加 x x x时, C l C_l Cl增加 x x x即可表示 A l ∼ A r A_l\sim A_r AlAr均增加 x x x,但是相应的 A r + 1 ∼ A l e n A_{r+1}\sim A_{len} Ar+1Alen也被影响了,所以 C r + 1 C_{r+1} Cr+1需要减少 x x x才能保证后续区间不被影响。

更新函数

void update(int i,int x){
	while(i<=len){
		C[i]+=x;//加上x
		i+=lowbit(i);//下一个被影响的i
	}
}

初始化函数

void init(){
	memset(C,0,sizeof(C));//初始化C数组为0
	for(int i=1;i<=len;i++){
		update(i,A[i]-A[i-1]);//递归插入B[i]=A[i]-A[i-1],注意需要A[0]=0
	}
}

区间修改

void change(int l,int r,int x){
	update(l,x);
	update(r+1,-x);
}

单点查询

int query(int i){
	int sum=0;
	while(i){
		sum+=C[i];
		i-=lowbit(i);
	}
	return sum;
}

区间最值问题

考虑一类问题,给出长度为 l e n len len的连续区间,并给出每个端点的初始值,现允许在询问的过程中进行单点修改,每次询问的是区间 [ l , r ] [l,r] [l,r]的最大或最小值信息。

我们可以转化连续区间为 [ 1 , l e n ] [1,len] [1,len]的树状数组,假设 A A A为原数组, C i C_i Ci为所维护的树状数组,记录的是 [ i − l o w b i t ( i ) + 1 , i ] [i-lowbit(i)+1,i] [ilowbit(i)+1,i]的最值。

更新函数

void update(int i,int x){
	while(i<=len){
		if(visit[i]){//如果i已被访问,需引入visit数组记录i是否被访问
			C[i]=max(C[i],x);
			//或C[i]=min(C[i],x);
		}else{
			C[i]=x;
		}
		i+=lowbit(i);//下一个被影响的i
	}
}

初始化函数

void init(){
	memset(visit,0,sizeof(visit));//初始化visit数组为0
	for(int i=1;i<=len;i++){
		update(i,A[i]);//递归插入B[i]=A[i]-A[i-1],注意需要A[0]=0
	}
}

查询函数

  1. 每次记录 C [ r ] C[r] C[r],然后令 r = r − 1 r=r-1 r=r1,跳到第二步
  2. 查询 [ r − l o w b i t ( r ) + 1 , r ] [r-lowbit(r)+1,r] [rlowbit(r)+1,r]所维护的区间,更新 r = r − l o w b i t ( r ) r=r-lowbit(r) r=rlowbit(r)直到 l l l r r r的区间内,跳到第三步
  3. 重复第一步直到 l = r l=r l=r
int query(int l,int r){
	int M=A[r];
	while(1){
		M=max(M,A[r]);
		//或M=min(M,A[r]);
		if(r==l) break;
		for(r=r-1;l<=r-lowbit(r);r-=lowbit(r)){//保证l不在r维护区间内才循环
			M=max(M,C[r]);
			//或M=min(M,C[r]);
		}
	}
	return M;
}
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cout0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值