预训练模型MT-BERT的探索和应用

预训练模型MT-BERT的探索和应用

提纲
预训练背景和现状

MT-BERT 核心能力建设

MT-BERT 业务落地

MT-BERT 总结

预训练背景和现状
NLP预训练发展
在这里插入图片描述
预训练进化方向
预训练模型多元化发展
在这里插入图片描述
预训练进化方向(续)
在这里插入图片描述
主流大规模模型

在这里插入图片描述
应用案例:Google搜索使用BERT
在这里插入图片描述
在这里插入图片描述
工业界动态
业界主流公司的搜索及NLP场景都陆续使用BERT或类似的预训练模型
在这里插入图片描述
MT-BERT
MT-BERT 定位

MT-BERT是针对搜索场景打造的BERT模型,为语义理解任务提供平台级解决方案
在这里插入图片描述
MT-BERT 定位(续
在这里插入图片描述

MT-BERT 训练加速
• 训练框架优化,TF分布式方案升级为Horovod方案,多机多卡稳定加速比

• 单精度和半精度混合训练,减少显存占用,加大Batch Size

• 优化器Adam升级为LAMB,加大Batch Size下减少泛化误差

• DeepSpeed,支持更大模型、更快训练

• Checkpointing、XLA、Kernel优化

多机多卡训练速度提升2.7倍
在这里插入图片描述
MT-BERT 更好的预训练规划
在这里插入图片描述
MT-BERT 更好的通用模型
训练任务优化:Masking策略优化,融入知识

在这里插入图片描述
MT-BERT预训练中加入外部领域知识

  1. Entity-aware Masking

  2. Knowledge Graph Fusion

在这里插入图片描述
• 训练任务 SOP升级SRP

• 输入层 中文混合粒度

• 隐层的优化 增加层数 相对位置编码

• 训练技巧 去掉Dropout 更多的数据

在这里插入图片描述

图解(MT-BERT在CLUE Leaderboard上排名第一)

MT-BERT 领域适配
Domain/Task-aware Continue Pretraining

在这里插入图片描述

MT-BERT 检索任务适应,双塔模型
双塔得到的表征通过Pooling的方式,信息的损失很大。

通过引入kmeans对这些表征聚类,再后交互,能够很大程度上减少信息损失。

在这里插入图片描述
在多个数据集合Trivia QA, SQuAD, Natural Questions 和 MS MARCO上 取得了非常显著的效果提升。

在这里插入图片描述
MT-BERT 检索任务适应,交互模型
在这里插入图片描述
MT-BERT 检索任务适应,关键词分析
我们发现 在检索任务中,主题匹配的 候选优于一般匹配

我们定义 了三种相关性等 级:主题匹配、一般匹配和不匹配
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图解(实验结果)

MT-BERT 实体链指任务适应
在这里插入图片描述
MT-BERT 模型轻量化
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

图解(不同量级量级的实验结果)

MT-BERT 多模态预训练

在这里插入图片描述
在这里插入图片描述
MT-BERT应用
MT-BERT 在深度查询理解中的应用

在这里插入图片描述
MT-BERT 在搜索场景中的应用
在这里插入图片描述

MT-BERT 在推荐理由场景中的应用
推荐理由: 基于大众点评UGC为每个POI生产的自然语言可解释性理由

场景化分类: 基于MT-BERT进行单句分类微调,提供符合不同场景需求的推荐理由服务。

MT-BERT 在情感分析中的应用
句子级情感分析

非常好吃, 环境很好 服务很周到 饮料很好喝 ——> 正向

临近九州东路路口,在路西,斜对过是加油站。 ——> 中性

菜的口味很一般般啦,房间的服务也跟不太上 ——> 负向

细粒度情感分析

这家店非常好找,交通也很方便,门口可以停车, 交通方便 ——> 正向

车位还挺多,环境装修典雅,就是座位比较挤,服

务员比较忙,态度感觉一般吧,价格偏高,好在东 服务态度 ——> 中性

西不错,性价比一般吧。饭菜非常好吃,尤其是 价格水平 ——> 负向

鱼,味道很鲜美,分量还挺大,吃撑了~
在这里插入图片描述
Aspect-aware LSTM(AA-LSTM)
在这里插入图片描述
基于MT-BERT升级细粒度情感分析模型
在这里插入图片描述
MT-BERT 一站式平台
平台特性

• 平台预置多版本MT-BERT模型(Tiny、Small、Medium、Base、Large)及Google BERT、RoBERTa等开源预训练模型

• 支持单句分类、句间关系、序列标注任务的分布式Finetune训练和预测

• BERT as Feature 排序模型训练、搜索实验平台深度融合

• 支持模型裁剪和知识蒸馏,定制上线小模型
在这里插入图片描述
总结
MT-BERT 本地生活服务预训练模型

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值