公众号 系统之神与我同在
本文包含四个部分:
1、语义理解与图(预训练模型与外部知识)
2、ERNIESage(语义图理解技术)
3、知识增强预训练(隐式与显式知识表示)
4、工业应用落地(案例介绍)
语义理解与图
文本匹配的多种视角
ERINE的辉煌胜绩
更强ERNIE模型的使用,可访问文心平台: https://ai.baidu.com/easydl/nlp/
GraphSage的介绍
GraphSAGE源于图卷积网络
图像卷积将一个像素点周围的像素按照不同的权重叠加起来。
图结构卷积将一个节点周围的邻居按照不同的权重叠加起来。
图像取样和聚合
已有方法对文本+图的局限
项目代码:https://github.com/PaddlePaddle
文本图的来源:知识引入
ERNIESage-Node节点语义理解
ERNIESage-Edge边的“单塔”聚合
ERNIESage-Node与ERNIESage-Edge对比
ERNIESage-1 Neighbor:邻居的单塔聚合
·用ERNIE来作为节点聚合函数实现邻居**“单塔”聚合**
·序不变性:互不相见Attention Mask,以及独立Position Embedding
·长度无限:Sampling机制、ERNIE Doc
ERNIESage-N Neighbor:多阶邻居的token-level深度聚合
结合Node和Edge的方案,将token-level的交互扩展到通用多层聚合
保留每一层的Token级别特征,并且每一层通过Multi-Head Attention交互
ERNIESage 4种模型总结
① 结合语义与结构信息的ERNIESage取得最好效果:MRR平均提升**+9.7%**
② ERNIESage横向比较:使用ERNIE建模邻居信息取得最优效果
ERNIESage在文本图推理TextGraph-14 Coling协办比赛中的应用
2006年开始举办,今年为第14届
数据量少, 人工标注困难
挑战难度大, 基于图的多步推理
任务目标:在解释图中进行多步文本推理,召回出符合推理过程的若干节点
ERNIESage在文本图推理TextGraph-14 Coling协办比赛中的应用
• 基于ERNIESage模型以60.33的MAP分数取得第1名,领先第二名2%
显式Explicit/隐式Impicit引入知识
显式知识引入
·额外知识库的引入(上线逻辑复杂)
·知识建模(计算效率变慢)
隐式知识引入
·预训练的方法“尽量”捕捉知识
·不需要再扩大预训练模型
知识增强预训练
聚合知识模块——负责知识交互, 捕捉知识之间关系
通过知识增强的 CLS还原被Mask的Tokens
下游任务应用
工业应用落地
工业落地案例#1: 关键词触发
工业落地案例#2: 地图POI ERNIESage检索
总结
将知识以图的形式加入到语义理解中
用ERNIESage建模语义图
通过知识增强预训练来提升模型效果