知识增强图语义理解技术

在这里插入图片描述

公众号 系统之神与我同在

本文包含四个部分:

1、语义理解与图(预训练模型与外部知识)

2、ERNIESage(语义图理解技术)

3、知识增强预训练(隐式与显式知识表示)

4、工业应用落地(案例介绍)

语义理解与图
在这里插入图片描述
文本匹配的多种视角
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
ERINE的辉煌胜绩
在这里插入图片描述
在这里插入图片描述
更强ERNIE模型的使用,可访问文心平台: https://ai.baidu.com/easydl/nlp/

GraphSage的介绍

GraphSAGE源于图卷积网络
在这里插入图片描述
图像卷积将一个像素点周围的像素按照不同的权重叠加起来。

在这里插入图片描述
图结构卷积将一个节点周围的邻居按照不同的权重叠加起来。

图像取样和聚合

在这里插入图片描述
已有方法对文本+图的局限
在这里插入图片描述
在这里插入图片描述
项目代码:https://github.com/PaddlePaddle
在这里插入图片描述
文本图的来源:知识引入
在这里插入图片描述
在这里插入图片描述
ERNIESage-Node节点语义理解
在这里插入图片描述
在这里插入图片描述
ERNIESage-Edge边的“单塔”聚合
在这里插入图片描述
ERNIESage-Node与ERNIESage-Edge对比
在这里插入图片描述
ERNIESage-1 Neighbor:邻居的单塔聚合
在这里插入图片描述
·用ERNIE来作为节点聚合函数实现邻居**“单塔”聚合**
·序不变性:互不相见Attention Mask,以及独立Position Embedding
·长度无限:Sampling机制、ERNIE Doc
在这里插入图片描述
ERNIESage-N Neighbor:多阶邻居的token-level深度聚合
在这里插入图片描述
结合NodeEdge的方案,将token-level的交互扩展到通用多层聚合
保留每一层的Token级别特征,并且每一层通过Multi-Head Attention交互
在这里插入图片描述
ERNIESage 4种模型总结
在这里插入图片描述
在这里插入图片描述
① 结合语义与结构信息ERNIESage取得最好效果:MRR平均提升**+9.7%**

② ERNIESage横向比较:使用ERNIE建模邻居信息取得最优效果
在这里插入图片描述ERNIESage在文本图推理TextGraph-14 Coling协办比赛中的应用
在这里插入图片描述
2006年开始举办,今年为第14届
数据量少, 人工标注困难
挑战难度大, 基于图的多步推理
任务目标:在解释图中进行多步文本推理,召回出符合推理过程的若干节点
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述ERNIESage在文本图推理TextGraph-14 Coling协办比赛中的应用

基于ERNIESage模型以60.33的MAP分数取得第1名,领先第二名2%

显式Explicit/隐式Impicit引入知识

显式知识引入

·额外知识库的引入(上线逻辑复杂)
·知识建模(计算效率变慢)

隐式知识引入

·预训练的方法“尽量”捕捉知识
·不需要再扩大预训练模型

在这里插入图片描述
知识增强预训练
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
聚合知识模块——负责知识交互, 捕捉知识之间关系
在这里插入图片描述
通过知识增强的 CLS还原被Mask的Tokens

下游任务应用

在这里插入图片描述
在这里插入图片描述
工业应用落地

工业落地案例#1: 关键词触发
在这里插入图片描述
工业落地案例#2: 地图POI ERNIESage检索
在这里插入图片描述
总结

将知识以图的形式加入到语义理解中
在这里插入图片描述
用ERNIESage建模语义图
在这里插入图片描述
通过知识增强预训练来提升模型效果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值