最完整+全解析的Floyd算法(C++版)


  本文小述:本文运用邻接矩阵构造的是有向图,用邻接矩阵实现Floyd算法(有兴趣的话可以自己动手用邻接表的方法尝试实现以下),在实现的过程中加强了动态数组的运用。该代码配合 B站视频的讲解来看更易懂哦~代码是多注释、完整版(将.cpp和.h的文件代码联合起来便可完整实现)。

一、Floyd算法简介

  Floyd(弗洛伊德)算法相对于Dijkstra算法来说,可以解决多源最短路径问题(即可以从任意一个点到任意一个点),可应用于地图导航走最短路径、为各城市修建最短路径的通信网(节省成本)等问题,时间复杂度是O(n3)

二、代码部分

知识储备:动态创建二维数组、邻接矩阵、图论、虚析构函数、静态函数(static)的运用

Graph.h文件代码

#ifndef GRAPH_H
#define GRAPH_H
#include <algorithm>
#include <stdio.h>	// exit()函数需要用到的头文件
#define X 9999	//相当于无穷大

class Graph
{
    private:
        static Graph* instance;		//创建实例:类是一个抽象类,实例可方便用于调取类成员的方法函数
        int n, m;	//n是顶点个数,m是边数
        char* data;		//顶点数组,用来储存顶点(char类型)
        int** w;	//weight 边的权重,邻接矩阵
        int** path; //用来记录最小边权值顶点的序号,邻接矩阵

    public:
        Graph();
        virtual ~Graph();		//虚析构函数,用来程序结束后释放new的内存
        static Graph* getInstance();	//获取实例

        void createGraph(Graph& G);
        int getIndex(const Graph& G, char v);	//获取顶点v的在顶点数组data中的下标
        void Floyd(Graph& G);
        void showPath(const Graph& G, int u, int v);	//展示最短路径

};
#endif // GRAPH_H

  自己在尝试写代码的时候,要弄清除一个图有哪些元素、一个算法需具备哪些元素,才有思路、好下手写代码喔~

Graph.cpp文件代码

#include "Graph.h"
#include <iostream>
using namespace std;

Graph::Graph()		//默认构造
{
    //ctor
}

Graph* Graph::instance = nullptr;	//固定套路
Graph* Graph::getInstance()		//同上,记住就好,也可以自己尝试理解下
{
    if(!instance) instance = new Graph();
    return instance;
}

int Graph::getIndex(const Graph& G, char v)		//获取顶点v在顶点数组中的下标
{
    for(int i = 0; i < G.n; i++)
        if(G.data[i] == v) return i;
    return -1;	//没找到就返回-1
}

void Graph::createGraph(Graph& G)
{
    cout << "please input the number of vertex and arc:";
    cin >> G.n >> G.m;
    G.data = new char[G.n];		//动态创建一维数组
    cout << "please input the value of vertice:";
    for(int p = 0; p < G.n; p++)
        cin >> G.data[p];
    char v1, v2;
    int power, i, j;
    G.w = new int*[G.n];	//动态创建二维数组,申请了 int* 类型的G.n行空间
    for(int s = 0; s < G.n; s++)
        G.w[s] = new int[G.n];		//每一行申请一个int类型的G.n列空间

    for(int x = 0; x < G.n; x++)
        for(int y = 0; y < G.n; y++){
            if(x == y) G.w[x][y] = 0;	//边的邻接矩阵中左对角线权重(即自己的权重)都设为0,因为是多源的
            else G.w[x][y] = X;		//其他边的权重初始化为无穷大
        }

    cout << "please input the weight of arc between 2 vertice as 100 A B:" << endl;
    for(int k = 0; k < G.m; k++){
        cin >> power >> v1 >> v2;
        i = getIndex(G, v1);
        j = getIndex(G, v2);
        if(i == -1 || j == -1){	//没在顶点数组中找到对应的顶点下标
                cout << "Sorry, I can't find the vertex" << endl;
                exit(-1);	//直接退出程序
        }
        G.w[i][j] = power;	//有向图赋值边的权重
    }
}

void Graph::Floyd(Graph& G)
{
    G.path = new int*[G.n];		//动态创建二维数组
    for(int s = 0; s < G.n; s++){
        G.path[s] = new int[G.n];
        for(int t = 0; t < G.n; t++)
            G.path[s][t] = -1;	//初始化path邻接矩阵的值
    }
    //特别注意:不能用fill函数来初始化动态二维数组,因为动态new出来的空间不一定连续


    for(int v = 0; v < G.n; ++v)    //v是指在某两个点中,它们之间点的下标
        for(int i = 0; i < G.n; ++i)
            for(int j = 0; j < G.n; ++j)
                if(G.w[i][j] > G.w[i][v] + G.w[v][j])	//看配合B站视频讲解效果更棒,这里不多做解释!
                {
                    G.w[i][j] = G.w[i][v] + G.w[v][j];
                    G.path[i][j] = v;
                }
}

void Graph::showPath(const Graph& G, int u, int v)
{	//看配合B站视频讲解效果更棒,该函数不多做解释!

    if(G.path[u][v] == -1) cout << G.data[u] << " to " << G.data[v] << endl;	//B站输出的是顶点序号,我这输出的是顶点的值
    else{
        int mid = G.path[u][v];
        showPath(G, u, mid);
        showPath(G, mid, v);
    }
}

Graph::~Graph()		//虚析构函数作用:一般都是用来程序结束后释放new出来的内存
{
    delete[] data;

    for(int i = 0; i < n; i++)
        delete[] w[i];
    delete[] w;

    for(int i = 0; i < n; i++)
        delete[] path[i];
    delete[] path;
}

  其实我们在写算法的时候,无非就是对数据的储存进行操作(对二维数组的操作),这也是算法的本质。

main.cpp文件代码

#include <iostream>
#include "Graph.h"	//自己写的头文件要用引号

using namespace std;

int main()
{
    char v1, v2;
    int a, b;
    Graph G;
    Graph::getInstance()->createGraph(G);	//用实例来调取抽象类的函数方法
    Graph::getInstance()->Floyd(G);
    cout << "please input which two vertice you want to show the shortest path between them:";
    cin >> v1 >> v2;
    a = Graph::getInstance()->getIndex(G, v1);
    b = Graph::getInstance()->getIndex(G, v2);
    Graph::getInstance()->showPath(G, a, b);
    return 0;
}

例子展示

Input(点我可进入链接👉B站视频👈的测试示例):
please input the number of vertex and arc:4 8
please input the value of vertice:A B C D
please input the weight of arc between 2 vertice as 100 A B:
5 A B
4 B C
2 B D
7 A D
3 C A
3 C B
2 C D
1 D C
please input which two vertice you want to show the shortest path between them:B A

Output:
B to D
D to C
C to A


  2023年1月14日更新 - 上面用于理解,但算法竞赛中 Floyd 模板一般用下面这个
👉对应算法练习题:点我跳转

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
const int N = 110;

int n, m;
int dist[N][N], w[N][N];

int main(){
    int res = INF;
    cin >> n >> m;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
        	// dist数组代表点i和j之间的最短距离,w数组代表点连接i和j的边权
            if(i != j) dist[i][j] = INF, w[i][j] = INF / 2;
    for(int i =1; i <= m; i++){
        int u, v, d;
        cin >> u >> v >> d;
        w[u][v] = w[v][u] = d;
        dist[u][v] = dist[v][u] = d;	
    }
    /**
     * 在Floyd算法枚举k的时候,已经得到了前 k-1 个点的最短路径
     * 这k-1个点不包括点k,并且他们的最短路径中也不包括 k点
     * 那么我们便可以从这前 k-1 个点中选出两个点 i , j 来
     * 此时 i,j 已经是(i, j)间最短路径,且这个路径不包含 k 点
     */
    for(int k = 1; k <= n; k++){
        for(int i = 1; i < k; i++)
            for(int j = i + 1; j < k; j++)
                //判断最小环
                res = min(res, dist[i][j] + w[i][k] + w[k][j]);
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
            	//Floyd算法的核心
                dist[i][j] = dist[j][i] = min(dist[i][j], dist[i][k] + dist[k][j]);
    }
    if(res >= INF / 2) cout << "No solution." << endl;
    else cout << res << endl;
    return 0;
}

路漫漫其修远兮,吾将上下而求索

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ac君

在你们的鼓励下我会多多分享代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值