c++图论算法1——Floyd(弗洛伊德)算法



一、弗洛伊德算法是什么?

 Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法。 

                                                                                                                      ——百度百科

咋一看很复杂,其实弗洛伊德是求最短路算法中最最最简单的一种!看看核心代码:

​for(int k=1;k<=n;k++)
	for(int i=1;i<=n;i++) 
		for(int j=1;j<=n;j++){
			if(d[i][k]+d[k][j]<d[i][j])
				d[i][j]=d[i][k]+d[k][j];

怎么样!是不是简单地令人发指——三个for循环,一个if判断,一个赋值语句。

那么,话不多说,让我们简单了解一下弗洛伊德的用法和写法吧! 


二、适用情况

多源最短路问题

时间复杂度:O(n^3)

空间复杂度:O(n^2)

可以看出时间复杂度是非常惊人的,可是它有一个很重要的特性:

Floyd最终求出了图中每对点之间的最短路

(这就是所谓“多源”,即多个起点)

因此在求多对点之间的最短路时,它是非常有优势的。



三、代码实现

(如果前面讲得不是很清楚,可以仔细阅读一下代码的注释。)

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int m,n,d[301][301];
int main()
{
	memset(d,0x3f,sizeof(d));  //这里不能赋值为127,否则之后的加法会爆 
	for(int i=1;i<=n;i++) d[i][i]=0;  //自己到自己的距离为0
	cin>>n>>m;  //n为点数,m为边数 
	for(int i=1;i<=m;i++)
	{
		int u,v,w;  //u,v,w分别为起点、终点、权值 
		cin>>u>>v>>w;
		d[u][v]=min(d[u][v],w);  //处理重边 
		d[v][u]=min(d[v][u],w);  //无向图的双向性 
	}
	for(int k=1;k<=n;k++)  //一定要先枚举中转点 
	{
		for(int i=1;i<=n;i++)  //枚举起点 
		{
			for(int j=1;j<=n;j++)  //枚举终点 
			{
				//核心代码 
				if(d[i][k]+d[k][j]<d[i][j])//如果经过中转点可以使直接从i到j的路费减少 
				{
					d[i][j]=d[i][k]+d[k][j];//松弛操作 
				}
			}
		}
	}
	cout<<endl;//美观 

	//输出
	for(int i=1;i<n;i++)
	{
		for(int j=i+1;j<=n;j++)
		{
			if(d[i][j]!=1061109567)  //如果有路径
				cout<<i<<'-'<<j<<':'<<d[i][j]<<endl;
		}
	}
	return 0;
}

带权值的无向图:(手绘略显粗糙)

 输入:

输出:

 

 (全文终)

  • 7
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值