开心的金明

开心的金明

【问题描述】

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过n元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的n元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过n元(可以等于n元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:v[j1]×w[j1]+v[j2]×w[j2]+…+v[jk]×w[jk]。(其中×为乘号)请你帮助金明设计一个满足要求的购物单。

【输入格式】

第1行,为两个正整数,用一个空格隔开n,m(其中n<30000表示总钱数,m<25为希望购买物品的个数)。

从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有2个非负整数v、p,其中v表示该物品的价格(v≤10000),p表示该物品的重要度(1~5)。

【输出格式】

只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<100000000)。

【输入样例】

10 5

8 2

4 5

3 5

4 3

2 2

【输出样例】

39

 

本问题可以简单概括为:有m件物品和一个容量为n的背包。第i件物品的费用是v[i],价格与重要度乘积是p[i]=v[i]×w[i]。求解将哪些物品装入背包可使p[i]总和最大,即“01背包问题”。

 

1.状态的设计

    f[i,j]记录“选取前i件物品花费j元钱”的最大价值,我们可以从第1 个物品出发,一直取到第i个物品,则可以分成i个阶段,我们以f[i,j]作为状态。

0

1

2

3

4

5

6

7

8

9

10

 

阶段0

0

0

0

0

0

0

0

0

0

0

0

边界

阶段1

0

0

0

0

0

0

0

0

16

16

16

取价格8的物品

阶段2

0

0

0

0

20

20

20

20

20

20

20

取价格4的物品

阶段3

0

0

0

15

20

20

20

35

35

35

35

取价格3的物品

阶段4

0

0

0

15

20

20

20

35

35

35

35

取价格4的物品

阶段5

0

0

4

15

20

20

24

35

35

39

39

取价格2的物品

2.状态转移方程

f[i,j]=max{ f[i-1,j-v[i]]+v[i]×w[i],f[i-1,j]}(1≤i≤m,v[i]≤j≤n)

f[i,0]=0 (1≤i≤m),f[0,j]=0 (0≤j≤n)

该算法的时间复杂度为O(n×m),参考程序如下:

var i,j,m,n:longint;

f:array[0..100,0..30000] of longint;

v,w:array[1..25] of longint;

begin

readln(n,m);

for i:=1 to m do begin read(v[i],w[i]);

for i:=1 to m do

for j:=v[i] to n do

if f[i-1,j]>f[i-1,j-v[i]]+v[i]*w[i] then f[i,j]:=f[i-1,j]

else f[i,j]:=f[i-1,j-v[i]]+v[i]*w[i];

writeln(f[m,n]);

end.

3.优化空间

以上方法的空间复杂度为O(n×m),可以优化到O(n)。

首先,我们知道f[i,j]是由f[i-1,j]和f[i-1,j-v[i]]两个子问题决策而来;也就是说第i阶段只与第i-1阶段有关,可以使用滚动数组来优化空间。

继续分析,若将f[i,j]改为一维数组g[j],并将上面程序中for j:=v[i] to n do循环改为for j:=n downto v[i]do,这样的顺序计算g[j]时,可以保证g[j-v[i]]保存的是前一阶段状态f[i-1,j-v[i]]的值。改进的程序如下:

var i,j,m,n:longint;

   g:array[0..30000] of longint;

   v,w:array[1..25] of longint;

begin

  readln(n,m);

  for i:=1 to m do  read(v[i],w[i]);

  for i:=1 to m do

   for j:=n downto v[i] do

     if g[j]<g[j-v[i]]+v[i]*w[i]  then g[j]:=g[j-v[i]]+v[i]*w[i];

   writeln(g[n]);

end.

请仔细对比两个参考程序,正确理解程序的含义,对今后学习其它类型的背包,有着十分重要的作用。01背包问题是最基本的背包问题,它包含了背包问题中划分阶段,确定状态、建立状态转移方程的基本思想,其它类型的背包问题往往也可以转换成01背包问题求解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
非常抱歉,我之前的回答有误。开心金明问题(P1060)是一个经典的背包问题,而不是一个问候问题。下面是使用01背包算法解决开心金明问题的正确代码及注释: ```cpp #include <iostream> #include <algorithm> using namespace std; const int MAXN = 33000; // 背包最大容量 int dp[MAXN]; // 动态规划数组,dp[i]表示容量为i时的最大价值 int main() { int n, m; // n表示物品个数,m表示背包容量 cin >> m >> n; for (int i = 0; i < n; i++) { int v, p; // v表示物品的体积,p表示物品的价值 cin >> v >> p; for (int j = m; j >= v; j--) { // 从后往前遍历背包容量,保证之前计算的dp[j-v]没有被覆盖 dp[j] = max(dp[j], dp[j - v] + p); // 更当前容量下的最大价值 } } cout << dp[m] << endl; // 输出背包容量为m时的最大价值 return 0; } ``` 代码解释: 1. 首先,我们定义了常量MAXN表示背包的最大容量,并声明了一个长度为MAXN的dp数组,dp[i]表示容量为i时的最大价值。 2. 接下来,从输入中读取背包容量m和物品个数n。 3. 然后,使用一个循环遍历每个物品。在每次循环中,我们读取当前物品的体积v和价值p。 4. 接着,使用一个逆序的循环遍历背包容量j,从m到v。这样做是为了保证之前计算的dp[j-v]没有被覆盖。 5. 在内层循环中,我们更dp[j]的值,将其更为dp[j]和dp[j-v] + p的较大值。其中,dp[j]表示不选当前物品时的最大价值,dp[j-v] + p表示选择当前物品时的最大价值。 6. 最后,输出dp[m],即背包容量为m时的最大价值。 非常抱歉之前给出的回答有误,请忽略之前的回答。希望这个解释对你有帮助!如果还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值