针对二分类问题的支持向量机模型

针对二分类问题的支持向量机模型



以下为基于SMO算法的SVM求解代码:


# 训练SVM模型
import matplotlib.pyplot as plt
import numpy as np

DataSet = [[3.0,3.0,1.0],
           [3.0,15.0,1.0],
           [4.0,3.0,1.0],
           [2.0,10.0,1.0],
           [1.0,1.0,-1.0],
           [0,2.0,-1.0],
           [-1.0,1.0,-1.0]]


NumData = len(DataSet)
NumAttr = len(DataSet[0])-1


# 初始化时也必须满足约束条件
while 1:
    A = np.random.rand(NumData)
    A[NumData-1] = sum([-A[m]*DataSet[m][-1] for m in range(NumData-1)])/DataSet[NumData-1][-1]
    if min(A)>=0:
        break

W = np.random.randn(NumAttr)
b = np.random.randn(1)

MaxTimes = 1000
TimeCal = 0
C = 3e8
while TimeCal
   
   
    
    H:
        A2new=H
    if A2new
    
    
     
     0)and(A[i]
     
     
      
      0)and(A[j]
      
      
     
     
    
    
   
   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值